UNIVERSITATER TEHMICA

Resear ch Report

CLLL-NAPQCA

Portable Ontology Query L anguage
(POQL)

Tudor Muresan, Rodica Potolea, Alin Suciu,
Emilia Cimpian, Adrian Mocan, Radu Popovici, Horatiu Tarcea

Computer Science Department of Technical University of Cluj-Napoca,
Romania,
Multiparadigm Logic Programming Group http://bavaria.utcluj.ro/~suciu/mip/

{tmuresan, potolea, suciu} @cs.utcluj.ro
{ cemilia, madrian, pandrei, tiustin} @asterix.obs.utcluj.ro

Resear ch supported by
DaimlerChrysler AG grant no. 3969000931-F92

July 25, 2002

http://bavaria.utcluj.ro/~suciu/mlp/

N

2.1
2.2
2.3
2.4
2.5

31
3.2
3.3
34
35

4.1
4.2

5.1
5.2
53
5.4

0o ~NO®

CSof TUCN, MLP Group

Portable Ontology Query Language (POQL)
Research Report, July 25, 2002

Table of Contents

INEFOTUCTION. ...ttt 2
TheoretiCal ASPECES.......ooeiiiiciere e e 3
Open Knowledge Base Connectivity (OKBC) Ontology Frame..... 3
QUETY SYNEAX.....teeeitieeiiiee ettt et e et e e e e re e e sre e e snne e e e enes 4
Computational MOGEL...........cooiiiiiie e 5
QUENY SEMANLIC.ccieetieciee et r e 7
Portable Ontology Query Language Architecture.............ccccoccuenee. 8
Implementation Issues of the POQL Kerndl.........cccocceeveveevvneneennee. 9
Protégé integrated iNterface.........oovvrerierenenieeecrese e 9
SYNEACHIC PAISENeeiteecee ettt n e 10
Prolog module (MetaiNterpreter) ..o 11
Prolog/Java POQL API Calls........ccccccveiieiiececcee e 12
Porting POQL_API on specific platforms.........c.ccocveveeeneeniencnne. 14
Installation and Utilization TiPsS.......ccocvveerennenieniesie e 20
Installation GUIdEIINES............cooiiiiiiiec e 20
Utilization GUIAEINES.......ccceviireieieeii e 21
Experimental RESUILS..........ccco i 24
Comprehensive Query Language for KRML.........ccccveevinienieennene 24
Extending the OKBC Assertion Language..........ccccoveeeenverieenenanns 27
Beyond the “peculiarities’” of SQL........ccccevieierieeriinsiene e 27
Checking Ontology CONSISLENCY........cccverereeieenieeiesie e 28
Conclusions and Possible Further Developments............ccoceveveenen. 30
ACKNOWIEAGEMENTS......ceiiiiciee et 30
REFEIENCES. ..ottt ne s 31
APPENDIX A — Prolog with freeze Metainterpreter...........ccoccoeeuee. 32
APPENDIX B — Knowledge Base Access Methods............cccceeuee..e. 35
APPENDIX C —JavaD0C FIES.......cccooiiiiiresieneeeeeee e 39

CSof TUCN, MLP Group

Portable Ontology Query Language (POQL)
Research Report, July 25, 2002

Abstract

This research report presents the definition and implementation of a query language
for reusable knowledge bases, which uses the Prolog logical form. The advantage is,
along with the complexity and flexibility of the allowed questions, the fact that it
constitutes a theoretical interface with user friendly querying systems (i.e. Natural
Language I nterface (NLI)). Also, it makes use of the Prolog solving mechanism for
an extensive search in the solution space, providing the framework for the
development of theories for automated merging and alignment of existing ontologies.
The goal of this research is achieved by the current implementation of the POQL
Kerndl.

Keywords:

logical query language, computational model, knowledge base space searching,
portable ontology, implementation

1 Introduction

A large number of ontologies have been constructed taking into account the principle of
generating reusable knowledge bases by adopting standard representational languages
[2], [9] or by achieving portability through a translational approach [8]. The advantage
of easy knowledge acquisition [1], [4] of the existing tools becomes a weakness from
the querying point of view. Thus, the development of query tools independent of the
ontology representation becomes appropriate [16], [17]. Such query tools serve both for
the development of user friendly query interfaces (i.e. Natural Language Interfaces) and
for the purpose of merging and alignment of the existing ontologies. Furthermore,
currently [7], there are yet extremely few theories or methods which facilitate or
automate the process of reconciling disparate ontologies.

This research report presents the definition and implementation of a query language for
reusable knowledge bases, which uses the Prolog logical form. The advantage is, along
with the complexity and flexibility of the allowed questions, the fact that it constitutes a
theoretical interface with user friendly querying systems (i.e. NLI). Also, it makes use
of the Prolog solving mechanism, for generating al the solutions of a specific search,
providing the framework for the development of theories for automated merging and
alignment of existing ontologies.

In section 2 we give an overview of the theoretical concepts pertaining to a reusable
ontology frame which conforms to the OKBC model [6] and also constitutes a
description of the syntax, semantics, architecture and computational model of POQL .
Implementation issues are detailed in the 3" section. Section 4 gives brief guidelines
regarding installation and utilization issues. Experimental results are shown in section 5.
We conclude by presenting the conclusions and proposals for further development, in
section 6.

CSof TUCN, MLP Group

Portable Ontology Query Language (POQL)
Research Report, July 25, 2002

2 Theoretical Aspects
2.1 Open Knowledge Base Connectivity (OKBC) Ontology Frame

An ontology is a specification of a representational vocabulary for a shared domain of
discourse. “The OKBC knowiedge model defines that classes and individuals form
digjoint partitions of a KB. It does not commit to whether classes, individuals, slots and
facets are represented as frames. It also does not commit to whether slots and facets
should be represented as classes or individuals.

Classes Facets Individuals

Frames

Slots

OKBC defines an Assertion Language (AL) for declarative specification of knowledge.
The AL is a first-order language with conjunction and predicate symbols, but without
disunction, explicit quantifiers, function symbols, negation, or equality. The
predicate symbols of the OKBC AL are class, individual, primitive, instance-of, type-of,
subclass-of, dot-of, facet-of, template-slot-of, template-facet-of, own-slot-value, own-
facet--value, template-slot-val ue, and template-facet—value” [6].

Our research report takes into consideration the most recent version of the Protégé
knowledge representation system (KRS), Protégé 2000, which incorporates the OKBC
knowledge model. It restricts OKBC to a hierarchy of frames[5], [9], [14].

The standard frame ontology consists of a hierarchy of frames which are organized,
according to their role, into three main categories: classes, slots and facets.

» Classes are concepts in the domain of discourse, collections of objects that have
similar properties; they are arranged into a subclass-superclass hierarchy and
allow multiple inheritance. There are two subcategories for classes: metaclasses
- classes which have as instances other classes, and ordinary classes — which
have ordinary objects as their materialization.

» Slots are named binary relations between a class and either another class or a
primitive object in order to describe properties, attributes of classes or relations
between classes. Slots attached to a class may be further constrained by facets.

» Facets are named ternary relations between a class, a slot, and either another
class or a primitive object; they describe properties of slots and may impose
additional constraints on aslot attached to aclass.

* Instances are materializations of classes.

CSof TUCN, MLP Group

Portable Ontology Query Language (POQL)
Research Report, July 25, 2002

A knowledge base includes both the ontology and individual instances of classes with
specific values for their slots. The distinction between classes and instances is not an
absolute one due to the existence of metaclasses.

The above mentioned restriction of Protégé to a hierarchy of frames has allowed us to
further extend semantic of the query language POQL as compared to the OKBC
Assertion Language, thus eliminating AL’s previously mentioned limitations (lack of
disjunction, negation, relational operators and so on, see examplesin section 5.2).

Meanwhile, limits of traditional OQL and SQL are surpassed in a functionally similar
fashion to LOREL, a query language developed by TSIMMIS [2] (see example in
section 5.3).

2.2 Query Syntax

The syntax of POQL is comprehensive in relation with the specifications of the
ongoing project, as stated in the definitions of Query Language for KRML, [12]. The
extended syntax refersto the constraints' specifications.

A query consists of one or many linked atomic queries. The syntax of such connections
follows the Prolog logical form, with conjunctions and disjunctions between
expressions and negation.

<query> ::= <disjunct-query>

<di sjunct-query> ::=
<conj unct - query>
<conj unct - query> <di sj unct - op> <di sj unct - query>

<conj unct-query> ::= <atom c query>
<atom c query> <conjunct-op> <conj unct - query>

<atomi c query> ::=
<termr <poql-op> <ternm> | <path ternp |
<path ternm> <relational-op> <path terms |
<axi om predi cat e> |
“(° <query> ‘)’ | ‘not(‘ <query> ‘')’

<path terms ::=

<termr | <ternme ‘.’ <path ternp
<ternp ::=

"<frame name> | ‘? <Prolog variable> | <Prolog constant>
<poqgl -op> ::=

‘“isa’ | ‘sub | ‘i

<rel ational -op> ::=
& :1 I 13 >:7 | 13 :<1 | 13 <1 | 13 >7 I & ::1

CSof TUCN, MLP Group

Portable Ontology Query Language (POQL)
Research Report, July 25, 2002

<l ogical-op> ::=
<conj unct-op> | <di sjunct-op>

<conj unct-op> ::=
<di sjunct-op> ::=

The <poql - op> operators correspond to the relations between frames:
isa direct instance-class relation;

transitive closure of isa relation;
sub direct inheritance relation;

transitive closure of sub relation.

The name of a frame may be simple, referring directly a frame of the knowledge base,
or it may be a path. A path is a concatenation of slots sl, s2, ..., sn, written 0.s1.82....sn,
where o is the frame slot s1 belongs to (class or instance), 0.s1 refers the frame slot s2
belongs to and so forth. Such expression has itself a truth value given by the
(non)existence of the path.

2.3 Computational M odel

In contrast to [12], the queries’ semantic is formally specified by a meta-interpreter [3]
for Prolog with freeze [15]. The soundness and safety of negation as failure for this
computational model is proven below asin [3].

A SLD refutation procedure for alogic program P and a goal G uses a computation rule
and a search strategy (rule). The computation rule chooses a subgod from the
sequence of goals to perform the derivation step. A SLD derivation is (said to be) fair if
it ensures any subgoal selection in a finite number of steps (the depth first search
strategy of Prolog is unfair).

The soundness and completeness of a fair SLD refutation has been proved, that is the
equivalence between the logical consequence (P | G and SLD refutation (P | Q).

(PFO - (P} ©
If the negation as failure is taken into consideration, a SLDNF computation rule is said
to be safe if it selects only ground negative literals and it does not interrupt the
corresponding SLDNF finite failure subtree building.

If conp(P) is the Clark completion of a program P, and the SLDNF rule of
computation is safe, the soundness and completeness of SLDNF refutation hold true.

(comp(P) FOQ « (P} ©

CSof TUCN, MLP Group

Portable Ontology Query Language (POQL)
Research Report, July 25, 2002

Moreover, the soundness and completeness of a SLD refutation are independent of the
chosen computation rule (e.g. the current subgoal selection).

We consider P; the logic program obtained from P, by enclosing any subgoal G of a
clauseinto afreeze(Var, G) predicate, where Var belongs to the set of G variable,
Var OSetVar (QG).

If
H- B,..,B ,..,B, OP,
then
H -By,..,freeze(Vvar, B),..,B, OP .

A subgoal f reeze(Var, Bi) isnot selected aslong asVar isunbound. On its
selection the equivalence

freeze(Var, B) o B
takes place.

A fair SLD refutation for aprogram P; and agoa G is achieved if the empty clause may
be derived in a finite number of steps. This means that all the subgoals f r eeze(Var,

B) have actually been selected. Taking into consideration the independence of the
choice of the computation rule and the logic equivalence between f r eeze(Var, B)

and B in the moment of the selection, we have:

Lemma:
(P FG9 - (P | ©
and

Corollary: (Soundness of SLD refutation for programs with freeze.)
(k F O -(PF O

The soundness of P; programs makes possible the use of Prolog with freeze as target
language for queries interpretation.

Even if the Prolog strategy is an unfair and incomplete one, freeze does not introduce
new exceptions from the theoretical model (comparing with those of standard Prolog).
Moreover, freeze may improve the Prolog program’s behavior, making safe the negative
literals selection (safety of SLDNF refutation). However, the Prolog strategy makes
incompatible the use of freeze together with the cut (‘!"), without imposing specia
restrictions.

CSof TUCN, MLP Group

Portable Ontology Query Language (POQL)
Research Report, July 25, 2002

24 Query Semantic

The queries’ semantic is formally specified by a meta-interpreter [3] for Prolog with
freeze, in acompositional manner [11]. For the <l ogi cal - op> we define:

senmantic(QL <l-op> Q@) - semfreeze(Ql) <l-op> semfreeze(Q@)
where

semfreeze(Q - semantic(Q, sem queue.

For the atomic query Qux with <pogl - op> we define:

semantic(Q) - postpone(Q)

where

post pone(X <poql-op> VY) - freeze((X Y), X <pogl-op>Y)

The above definition entalls that atomic queries are postponed through the freeze
predicate until at least one of its variables becomes instantiated. Postponed atomic
gueries are resumed by the sem queue predicate.

The following equivalences hold true:

a <poql-op> B o forall (X a <pogl-op> X, Lx),
menber (B, Lx)

forall (X, a <pogl-op> X, LX) « api(<pogl-op>)(a,Lx)

where api (<poql - op>) (a, Lx) represents an APl cal specific to the ontology
representation. These equivalences alow the definition of the semantic for the
postponed atomic queries through the correspondent ontology program interface:

semantic(a <pogl-op> B) - api(<pogl-op>)(a, Lx), nenber (B, LXx)

This renders the Prolog search strategy independent of the actual representation of the
queried ontology (Fig. 1).

We shall refer as acceptable (defined) queries to al queries which are not indefinitely
postponed. For such queries, we have demonstrated soundness in section 2.3. Many of
the indefinitely postponed queries may be transformed to be acceptable by enriching the
specification of the query (see section 5.2).

CSof TUCN, MLP Group

Portable Ontology Query Language (POQL)
Research Report, July 25, 2002

2.5 Portable Ontology Query Language Ar chitecture

The architecture of POQL isshown in Fig.1.

Parsed
Query Query Tab Solutions
Query / v\ M etainter preter
Quer L .
Par ser y Parsed \ Sear ching the
query Solution Space
Atomic
queries
Name Assertion
checking of results
A4
Ontology
API for
Atomic
Queries
y y
\ 4 \ 4
KNOWLEDGE BASE 1 KNOWLEDGE BASE 2

Fig. 1 System Architecture

A query is entered in a Prolog like logical form, using the interface we have developed.
Subsequently, a parser performs syntax and name checking, converting the query to a
string of our convenience which is further passed to the metainterpreter of Prolog with
freeze. The parser ensures, among other, the correct order of execution for the atoms of
complex queries. We have used a Prolog like strategy of searching through the entire
solution space, thus obtaining all the solutions for our query.

The resolution of the atomic queries is handled by methods specific to the ontology
representation (API). The result of each such atomic query is asserted as a Prolog fact
and further used by the solving algorithm.

The current implementation of POQL ensures queries independence from the
representation of the queried ontologies. Furthermore, the system is subject to future
developments, so that it may simultaneously query two distinct ontologies with different
representations. This feature will eventually make possible the integration of an
ontology merging theory [10]. Meanwhile, the user interaction may be enriched with a
Natural Language Interface.

CSof TUCN, MLP Group

Portable Ontology Query Language (POQL)
Research Report, July 25, 2002

3 Implementation Issues of the POQL Kernel

The implementation is focused on several distinct modules: an interface integrated in
Protégé 2000 or OntoWorks [13], a syntactic parser which enforces correctness of
syntax and use of names pertaining to the ontology name space, an APl which provides
access to methods querying the structure of the ontology and a metainterpreter which
givesthe solving strategy.

For the implementation, we have used two programming languages: Java [20] and XSB
Prolog [18]. The reason for using Java is that Protégé is a Java based environment and
provides an API for easy access to both the representation of the ontology and interface
development.

The syntactic parser is written under JavaCC, a Sun CompilerCompiler [19].

The implementation of the metainterpreter is written in XSB Prolog, which gives a
direct mapping between the logical form of the query and the solving strategy. XSB
Prolog represents a powerful instrument for solving logical forms; also, it uses a
backtracking mechanism that enables us to easily search through the entire solution
space.

All communication between Prolog and Java is performed, back and forth, through the
Interprolog [18], an easy to use interface which converts Java objects to stringsin DCG
format and vice versa. This enables Prolog code to call Java methods and Java code to
solve Prolog queries.

A query isentered in a Prolog like logical form, using the interface we have developed.
Subsequently, a parser performs syntax and name checking, converting the query to a
string of our convenience which is further passed to the XSB Prolog resolution
mechanism (Fig. 1). Each query is interpreted by a Prolog metainterpreter [3], which
ensures, among other, the correct order of execution for the atoms of complex queries.
We have used a Prolog like strategy of searching through the entire solution space, thus
obtaining all the solutions for the query.

3.1 Protégéintegrated interface

Protégé allows easy development through its structure of Tabs. Once such a Tab is
created, it can be included in the Protégé environment by modifying the mani f est . nf
file.

POQL Tab presents a multitude of functionalities:
* A class hierarchy panel which gives full browsing control to the classes
taxonomy. Double-clicking on a class reveals/hides its direct subclasses.
» A direct instances panel which displays the browser texts for the direct
instances of the selected class from the hierarchy panel. Double-clicking on

CSof TUCN, MLP Group

Portable Ontology Query Language (POQL)
Research Report, July 25, 2002

an instance adds the name of the instance to the query. The instance name is
not necessarily similar to the instance browser text. The former identifies
uniquely the frame in the hierarchy of frames, whereas the latter gives a
description of the frame, not necessarily unique in the name space.

* A dots panel which displays own dots of the selected class or instance.
Double-clicking on a slot inserts its name at the current cursor position in the
query.

* A text field where the user enters the desired query and an attached button
which starts the processing.

» All results of a query (bindings of defined variables) are displayed as atable,
below the query text field.

When POQLTab is loaded, method initialize is called: it sets the working
knowledge base, |oads the Prolog engine (if it has not already been loaded), loads the
Prolog modules (metainterpreter and resolution clauses), recreates the interface and
initializes the installation path and the path to the plugins directory.

runQuery starts the actual processing. It creates a parser QP for the current query,
callsrunPar ser and creates the Prolog query from the parsed expression and appends
to it the list of variables which are of interest to the user (the defined variable — see the
next section). Then it calls the Prolog metainterpreter with the newly generated query
and further collects all bindings of the defined variables and displays them in a table
like format.

The interface also displays the truth value of the query and the execution time.

3.2 Syntactic parser

The syntactic parser performs syntax checking which ensure that the current query
conforms to the rules described in section 2.2. Furthermore, the parser checks whether
the names which refer to frames of the ontology actually belong to the current name
space. Such names are entered between pairs of the special character \'.

The parser also accepts constant values, such as numbers, strings and the empty set (i.e.
[D- All constants are entered between pairs of the special character \”.

In order to ensure correctness of the execution, it is necessary that frame names do not
comprise characters other than alphanumeric and blanks.

A variable which appears in a query may have two distinct forms, established by its
prefix: ? or ?_. The former is a defined variable — a variable which bindings must
appear in the final result, whereas the latter is an undefined variable — one which has
only alinking role between different parts of the query and the user has no interest in its
meaning but usesit as aliaison (leant).

There are several steps involved in the processing performed by the parser on the initial
guery: anew string, par sedExpr essi on, isgenerated from the initial one, replacing

10

CSof TUCN, MLP Group

Portable Ontology Query Language (POQL)
Research Report, July 25, 2002

all occurrences of the character \. with \@, due to the way Prolog interprets it. Also
values of constants are replaced with their Prolog correspondent, depending whether
they are numbers (integer or float), strings, boolean or the empty set.

At the same time, a list of defined variables, vari abl eLi st, is created. It may be
accessed by calling the getVariabl eList or getVariabl eAssertionLi st
methods, which return, respectively, an ArrayLi st and a String. The list will be
appended to the end of the query, in an assertion clause. All the bindings for this list of
variables are collected by Prolog, after the resolution of the query has completed. They
are then sent from Prolog to Java, as a string, and further interpreted by the POQL
interface.

All processing takes place for a uniquely generated Stri ngBuf f er I nput St ream
which is created from a St ri ng passed to the constructor of the class. In order to
process the input stream, the user must call the runPar ser method, which sets the
working knowledgebase for name checking, initializes par sedExpressi on and
vari abl eLi st and startsthe actual parsing by calling the one_I i ne method.

As stated in the previous section, the interface is responsible for supervising of the
entire process, after the parsed query is generated, par sedExpr essi on, it is returned
to the POQLTab which further passes it (in a specific logical form) to the
metainterpreter of Prolog with freeze for its resolution.

3.3 Prolog module (metainter preter)

The Prolog module comprises a metainterpreter for Prolog with freeze and the
respective Java POQL _API calls for the resolution of the atomic queries.

The metainterpreter for Prolog with freeze, extending the one in [3], is given in DCG
form, in extenso, in Appendix A. It preserves the traditional semantic of the computed
answer of the general Prolog queries.

At the same time, the subgoal selection rule is modified, as follows: the leftmost
subgoal having all its input arguments bound is selected first for computation. It follows
that subgoals with unbound input arguments are postponed (see section 2.4.).

There are three types of postponed subgoals:
e Anatomic query: ?X <pogql - op> ?Y with both arguments unbound

 Apahterm:?X ‘.’ <path ternr with ?2X unbound
* A negated subgoa with unbound inner variables (thus, the safety of negation is
ensured)

The compound queries semantic is defined in a compositional manner [11]: the
semantic of the whole is obtained from the semantic of its parts. Thisis ensured by each
DCG metainterpreter rule.

11

CSof TUCN, MLP Group

Portable Ontology Query Language (POQL)
Research Report, July 25, 2002

All <poql - op> appearing in postponed atomic queries, are mapped by the r ename
predicate to corresponding operators which are directly executed by the Prolog engine

on resuming by the sem queue predicate.

Initial Operator Renamed Operator
i sa i saa
. . N
L N
sub subb
not not t
dot 3 dott3
@ sdot

Table. Oper ators mapping

The api /3 and resul t/2 predicates are used for the Java POQL API calls (see
Appendix A). The api / 3 predicate calls Java APl methods through the Interprolog
Interface. The results returned by the Java API are asserted in the Prolog database as

facts of ther esul t/ 2 predicate.

3.4 Prolog/Java POQL API calls

POQL_API is an abstract class, which ensures a common interface for accessing the
current knowledge base. It delegates the responsibility of implementing its methods to
the classes which inherit it (in our case Protégé POQL_API and OW_ POQL_AP —

see section 3.4.1.).

12

CS of TUCN, MLP Group

Portable Ontology Query Language (POQL)

Research Report, July 25, 2002

POQL atom c query

Prol og POQL API

Java POQL AP

?A sub ?B
?A sub ‘ad ass’

Post poned
get Di rect Subcl asses(A, adl ass)

Post poned
get Di r ect Subcl asses(ad ass)

‘aCl ass’ sub ?B

get Di rect Supercl asses(ad ass, B)

get Di rect Supercl asses(ad ass)

‘ad ass’ sub ‘bd ass’

di rect Subd assO (A B)

di r ect Subcl assO (ad ass, bd ass)

?A sub ‘aSlot’
‘aSlot’ sub ?B

get Di rect Subsl ot s(A, aSl ot)
get Di rect Supersl ots(aSl ot, B)

get Di r ect Subsl ot s(aSl ot)
get Di r ect Super sl ot s(aSl ot)

‘“aSlot’ sub ‘bSlot’

di rect SubSl ot O (aSl ot, bSl ot)

di rect Subsl ot O (aSl ot, bSl ot)

?A :: ?B Post poned Post poned

?A :: 'ad ass’ get Subcl asses(A, ad ass) get Subcl asses(ad ass)
‘adass’ :: 7B get Super cl asses(ad ass, B) get Super cl asses(ad ass)
‘ad ass’ ‘ bd ass’ subd assOf (A, B) subcl assOf (adl ass, bd ass)
?A ;. ‘aSlot’ get Subsl ot s(A, aSl ot) get Subsl ot s(aSl ot)
‘aSlot’ :: ?B get Supersl ots(aSlot, B) get Supersl ots(aSl ot)

‘asl ot’ ‘bSl ot’ subSl ot O (aSl ot, bSl ot) subsl ot O (aSl ot, bSl ot)
?A isa ?B Post poned Post poned

?A isa ‘ad ass’

getDi rectl nstances(A ad ass)

get Di rect | nstances(ad ass)

“anl nastance’ isa ?A

get Di rect TypeO (anl nst ance, B)

get Di rect TypeO (anl nst ance)

‘anl nst ance’ isa ‘ad ass’

di rect | nst ance(anl nst ance, ad ass)

di rect | nst ance (anl nst ance, ad ass)

?A . ?B Post poned Post poned
?A : ‘ad ass’ get | nst ances(A, ad ass) get | nst ances(ad ass)
‘anl nastance’ : ?A get Typef (anl nst ance, B) get TypeO (anl nst ance)

‘ anl nst ance’ ‘ad ass’ i nst ance(anl nst ance, ad ass) i nst anceO™ (anl nstance, ad ass)

?A . 7B Post poned Post poned

?A . ‘aSlot’ Post poned Post poned

‘ anl nst ance’ ‘aSl ot”’ get Sl ot At | nst anceVal ue(anl nst ance, aSl ot) get Sl ot At I nst anceVal ue(anl nst ance, aSl ot)

anl nstance . ?A

get Sl ot sAt | nst ance(anl nst ance)

get Sl ot sAt | nst ance(anl nst ance)

13

CSof TUCN, MLP Group

Portable Ontology Query Language (POQL)
Research Report, July 25, 2002

POQL_API's methods need to be static because of the communication way between
Java and Prolog, which is achieved through Interprolog.

This class contains two types of methods: the first kind is used for initialization and the
latter is used by Prolog for its solving strategy.

» Initialization methods — they initialize internal attributes, such as the
working knowledge base, the Prolog engine and the response list. Also,
there are methods which are used to assert in Prolog the return values for
methods of the latter kind.

» Actual interface methods: there are two distinct functionalities for
methods pertaining to the POQL_API:

1. Methods used for access to the ontology — they reflect the relations
existing between frames: PART-OF, IS-A and their respective transitive
closure. These methods verify the existence of such relations (i s ass,
isSlot, directlnstanced, subclassOf, instanceCf etc.)
or return objects for which such relations apply (get Subcl asses,
get Direct I nstances, getTypeCOf, getSl otsAtlnstance €efc.)

2. Methods used to access the values of instances of classes (objects, slots)
(get Sl ot At | nst anceVal ue).

All these methods have as return value objects of type Resul t, which
encapsulate both atruth value and alist of objects.

The above table represents the translation of POQL atomic queries to Java calls. The
full methods' prototypes are given in Appendix B.

3.5 Porting POQL _API on specific platforms

At the present time, there are two distinct implementations of POQL_API, the
Protégé POQL_API and OW_ POQL _API classes. They use different approaches to
gain access to the knowledge base. Thus, the user can choose the mode of interrogation
for aworking knowledge base: using Protégé API, or, respectively, using OW_API. The
former implementation is in final form, whereas the latter is subject to further
developments of the OntoWorks APl Model. Due to the fact that the current OntoWorks
APl is not in final form, the latter implementation has several unlisted features, which
belong in fact to the API itself. Therefore, this implementation of POQL_API mixes
methods from both the OntoWorks and Protégé APIs.

14

CS of TUCN, MLP Group

Portable Ontology Query Language (POQL)
Research Report, July 25, 2002

Java POQL API Pr ot égé_POQL_API Ont oWor ks POQL_API

Prot égé APl calls Prot égé APl calls Ont oWOr ksAPI call's
i sdass(String cls) getC's - get C ass
from Know edgeBase from OWN Know edgeBaseManager
isSlot(String slot) get Sl ot get Sl ot get Pr ot egebj ect
from Know edgeBase from Know edgeBase | from ON Knowl edgeBaseManager
i sMetacl ass(String netad s) getC's - get d ass

from Know edgeBase
i sMetadCl s
fromds

from OWN Know edgeBaseManager
i sMet adl ass
from ON _d ass

get Directl nstances(String
cls)

getC's
from Know edgeBase
get Direct | nst ances
fromds

get Cl ass

from OWN Know edgeBaseManager
get Direct | nst ances

from ON _Col |l ectionOC asses

getl nstances(String cls)

getd s
from Know edgeBase
get | nst ances
fromds

get Cl ass

from OWN Know edgeBaseManager
get I nst ances

from ON _Col | ecti onO Cl asses

subcl assOF (String son,
parent)

String

getC's
from Know edgeBase
hasSuper cl ass
fromds

get Cl ass
from OWN Know edgeBaseManager
get Subcl asses
from ON _d ass

di rect Subcl assO (String son, | getds - get Cl ass
String parent) from Know edgeBase from ON Know edgeBaseManager
hasDi r ect Super cl ass get Di rect Subcl asses
fromds from ON_d ass
supercl assO (String parent, | getCs - get Cl ass

String son)

from Know edgeBase
hasSuper cl ass
fromds

from ON Know edgeBaseManager
get Di rect Supercl asses
fromON _C ass

15

CS of TUCN, MLP Group

Portable Ontology Query Language (POQL)

Research Report, July 25, 2002

Java POQL API

Pr ot égé_POQL_API
Prot égé APl calls

Ont oWor ks POQL_API
calls

di rect Supercl assO (String
parent, String son)

getC's
from Know edgeBase
hasDi r ect Supercl ass
fromds

Prot égé APl calls Ont oWOr ks API
- get Cl ass

from OWN Know edgeBaseManager
get Di rect Supercl asses

from ON _C ass

di rect Supersl ot Of (String
parent, String son)

get Sl ot
from Know edgeBase
get Di rect Superslots

get Sl ot
from Knowl edgeBase
get Direct Superslots

get Pr ot egeObj ect
from OWN Know edgeBaseManager

from Sl ot from Sl ot
direct Subslot O (String son, | get Sl ot get Sl ot get Pr ot egebj ect
String parent) from Know edgeBase f rom Know edgeBase from ON Know edgeBaseManager
get Di rect Supersl ots get Direct Superslots
from Sl ot from Sl ot
supersl ot OF (String parent, | getSl ot get Sl ot get Pr ot egebj ect
String son) from Know edgeBase from Know edgeBase from ON Know edgeBaseManager
get Supersl ot s get Supersl ot s
from Sl ot from Sl ot
subslot O (String son, String | getSlot get Sl ot get Pr ot ege(bj ect

parent)

from Know edgeBase
get Supersl ot s
from Sl ot

from Know edgeBase
get Supersl ot s
from Sl ot

from OWN Know edgeBaseManager

directlnstanceO (String inst,
String cls)

get | nst ance
from Know edgeBase
getCs
from Know edgeBase
hasDi r ect Type
from I nstance

get Pr ot ege(bj ect
from OWN Know edgeBaseManager
get Direct | nst ances
fromON _C ass
get Nane
from ON O ass

16

CS of TUCN, MLP Group

Portable Ontology Query Language (POQL)
Research Report, July 25, 2002

Java POQL API

Pr ot égé_POQL_API
Prot égé APl calls

Ont oWor ks POQL_API

Ont oWOr ksAPI call s

i nstanceO (String
String cls)

i nst,

get | nst ance
from Know edgeBase
getCs
from Know edgeBase
hasType
from | nstance

Prot égé APl calls

get Pr ot egeObj ect
from OWN Know edgeBaseManager
get | nst ances
from ON _C ass
get Name
from ONd ass

getDirect TypeOr (String inst)

get | nst ance
from Know edgeBase
get Di rect Type
from I nstance
get Name
fromds

get | nst ance
from Knowl edgeBase
get Direct Type
from I nstance
get Name
fromds

get Pr ot egebj ect
from OWN Know edgeBaseManager
get Nane
from OV d ass

get TypeOX (String inst)

get | nst ance
from Know edgeBase
get Di rect Type
from I nstance
get Super cl asses
fromds

get | nst ance
from Knowl edgeBase
get Direct Type
from I nstance

get Pr ot ege(bj ect
from OWN Know edgeBaseManager

get Super cl asses
from OV d ass

get Supersl ots(String slot)

get Sl ot
from Know edgeBase
get Supersl ot s
from Sl ot

get Sl ot
from Knowl edgeBase
get Supersl ot s
from Sl ot

get Pr ot ege(bj ect
from OWN Know edgeBaseManager

get Direct Supersl ots(String
sl ot)

get Sl ot
from Know edgeBase
get Di rect Supersl ots
from Sl ot

get Sl ot
from Knowl edgeBase
get Direct Supersl ots
from Sl ot

get Pr ot egeObj ect
from OWN Know edgeBaseManager

get Direct Subsl ot s(String
sl ot)

get Sl ot
from Know edgeBase
get Di rect Subsl ot s
from Sl ot

get Sl ot
from Know edgeBase
get Di rect Subsl ot s
from Sl ot

get Pr ot egebj ect
from OWN Know edgeBaseManager

17

CS of TUCN, MLP Group

Portable Ontology Query Language (POQL)
Research Report, July 25, 2002

Java POQL API

Pr ot égé_POQL_API
Prot égé APl calls

Ont oWor ks POQL_API

Prot égé APl calls

Ont oWOr ksAPI call s

get Subsl ot s(String slot)

get Sl ot
from Know edgeBase
get Subsl ot s
from Sl ot

get Sl ot
from Knowl edgeBase
get Subsl ots
from Sl ot

get Pr ot ege(bj ect
from OWN Know edgeBaseManager

get Super cl asses(String cls)

getd s
from Know edgeBase
get Super cl asses
fromds

get Cl ass
from OWN Know edgeBaseManager
get Super cl asses
from ONd ass

get Di rect Supercl asses(String
cls)

getd s
from Know edgeBase
get Di rect Super cl asses
fromds

get Cl ass
from OWN Know edgeBaseManager
get Di rect Super cl asses
from ONd ass

get Subcl asses(String cls)

getd s
from Know edgeBase
get Subcl asses
fromds

get Cl ass
from OWN Know edgeBaseManager
get Subcl asses
from ONd ass

get Di rect Subcl asses(String
cls)

getC's
from Know edgeBase
get Di rect Subcl asses
fromds

get Cl ass
from OWN Know edgeBaseManager
get Di rect Subcl asses
from ONd ass

18

CS of TUCN, MLP Group

Portable Ontology Query Language (POQL)
Research Report, July 25, 2002

Java POQL API

Pr ot égé_POQL_API
Prot égé APl calls

Ont oWor ks POQL_API

Prot égé APl calls

Ont oWOr ksAPI call s

get Sl ot At | nst anceVal ue(String

instS, String slotS)

get | nst ance
from Know edgeBase
get Sl ot
from Know edgeBase
get Val ueType
from Sl ot
get OmSl ot s
from | nstance
get OmSl ot Val ues
from | nstance

get | nst ance
from Knowl edgeBase
get Sl ot
from Knowl edgeBase
get Val ueType
from Sl ot
get OmSl ot s
from | nstance
get OamnSl ot Val ues
from | nstance

get Pr ot egeObj ect
from OWN Know edgeBaseManager

get Sl ot sAt I nstance(String
i nstS)

get | nst ance
from Know edgeBase

get OmSl ot s
from | nstance

get | nst ance
from Knowl edgeBase

get OmSl ot s
from | nstance

get Pr ot ege(bj ect
from OWN Know edgeBaseManager

19

CSof TUCN, MLP Group

Portable Ontology Query Language (POQL)
Research Report, July 25, 2002

4 Installation and Utilization Tips
4.1 Installation Guidelines
In order to have aworking version of POQL, one must take the following steps:

» Make sure that OntoWorks or Protége 2000 is installed to a path which contains
no blank spaces (XSB Prolog is designed for Linux, it won't accept any path
that doesn’t conform to a standard Unix path).

» Unpack the self-extracting file to the OntoWorks installation directory.
Make sure that all necessary files are present:
* User files—inthe plugins directory:
0 poqgl _gsem P, poql operators. P, poqgl _map. P,
poql _api _cal |l s. P,
* POQLTab. j ar -inthepluginsdirectory:
* Query history ontology related files—in the plugins directory:

0 *.denv;
e XSB files: all XSB release files - in the OntoWorks installation
directory.
 Documentation files — in the OntoWorks directory:

Portabl e_(nt ol ogy_Query_Language. pdf,
Portabl e_Ont ol ogy_Query_Language__Research_Report. bat

» Copy the XSB release file structure to the installation directory of Protége 2000
or Ontoworks (...\OntoWorks\XSB). Make sure that, no matter what version of
XSB is used, itisinstaled in a directory named XSB (not XSB_2 5 or others).
Set the PATH environment variable to point to the XSB executable binary file
(e.g. ... \OntoWor ks\xsb\config\x86-pc-windows\bin).

« Start OntoWorks or Protégé 2000 and in the File->Configure menu check the
box corresponding to the POQL Tab.

All necessary Java files (classes and sources) are packed into the POQLTab. j ar file.
Its structureis the following one:

o User interface: com.utcn.pogl.ui.

= Choose_POQ_API _Dial og.java
I nstanceC sesPanel . j ava
I nst anceRenderer. java
I nst ancesPanel . j ava
POQLTab. j ava
ResponseTabl e. j ava
RootDi rectory. java
Sl ot Renderer.java
= Sl otsPanel.java

0 Ontology Access: com.utcn.pogl.ontologyAccess.

20

CSof TUCN, MLP Group

Portable Ontology Query Language (POQL)
Research Report, July 25, 2002

= POQL_API.java
" Result.java
com.utcn.pogl.ontol ogyAccess.protégeé.
= Protégé POQL_API.|ava
com.utcn.pogl.ontologyA ccess.ontoWorks.
= OntoWrks POQL_API.java

o Syntactic Parser: com.utcn.pogl.syntacticParser.

= QP
= ParseException.java
= (QP.java

= (@Constants.java

= (QTokenManager.java

= SinpleCharStream java
= Token.java

= TokenMyrError.java

4.2 Utilization Guiddines

Before the initialization of the tab takes place, the user is asked which of the
Protégé APl or the OntoWorks APl is to be used. By checking the Use Demo
CheckBox, afile containing queries is appended to the queries’ history (alist of queries
which have already been run; it may be used for easy selection of a previous query).
This is how the POQL Tab should look like, if you have followed the above mentioned
installation steps.

@onwito =[5 1]

Project Edit Window Help

Dl=la] (-] (2w

CS of TUCN MLP Group

Portable Ontology Query Language

August, 2002 http://bavaria.utcluj.rof~suciu/mips
Choose POOL API

@ Pratege

) OntoWorks

Selact to use temo gueries

V| Use D
[l Use Demo R

21

CSof TUCN, MLP Group

Portable Ontology Query Language (POQL)
Research Report, July 25, 2002

After the selections corresponding to the initial dialog box have been made, the tab is
initialized:

[t | newspaper-queries OntoWorks (C:MAdiXTmpforDoc 1\0ntoWorks-1.6. 2.850.1.0.15\examples\newspaper-queries. pprj).

Project Edit Window Help

Dl=la] [o]] 2w

r@ Classes Slots rl:l]l Forms r@ Instances rM PoQL |

Classes W: Direct Instances W:|5Ims W
[THING A k@ wir. science /[S]:DiRECT-TYPE
©-(C) SYSTEM-CLASS A k2> Chief Honcha 18] other_information
©- (C) Author & k2> Sparts Nut 18] responsible_for
@ (Tl ContentA k1> Wis Gardiner 5] :namE
© () AdvertisemnentA i 18] name
(5] Article i 8] current_joh_title
@ (© Layoul_info A i S salary
(£ Billing_Chart 4 I8! phone_number
() Content_Layout 0 IS byname
(E) Prototype_Newspaper H I5] date_hired
() Rectangle i 3 8] sections
(2 Bection E 3
(© Library
@Newspaper
@Orgamzatlun
? @Persun
@ (Tl Employee”
Columnist™
() Editor™
() Reporter™
©Salespersun
© (T Query 0 0
. 4] Y |
| | |

Click here for POOL Research Report

The upper three panels correspond, respectively, to the class hierarchy, direct class
instances and own slots of the selected class or instance (depending on the order of
selection of items in the previous two panels). By double clicking in one of the latter
two panels, the user may append the instance name (as opposed to the instance browser
name — see section 3.1) or the slot name to the cursor position in the query text field.

Queries are entered in atext entry field. They should obey the syntax (asis presented in
section 3.1). In order to ensure correctness of the execution, it is necessary that frame
names do not comprise characters other than alphanumeric and blanks.

A query may contain several types of Prolog constants. They should be entered
according to the following rules:

» Strings are contained between pairs of the character \”.

e Theempty set isrepresented as“[]”.

« Thealowed numerical constants are integers and floats.
» Possible boolean constantsaret r ue and f al se.

Also, all frame names should be input in-between pairs of the character \'.

22

CSof TUCN, MLP Group

Portable Ontology Query Language (POQL)
Research Report, July 25, 2002

Results of the input query — all possible bindings of the defined variables are displayed
in the panel below the query input field. If there are unbound variables with no bindings
and still the query constraints are satisfied, such results are displayed using the *

character. When the value to which a variable is bound is undefined, it is displayed as
the empty set[] .

Queries history is saved in a list which allows access to previous queries by simply
right-clicking in the query text entry area. Also, afile which has the same name with the
opened ontology and the extension . deno is loaded at the initialization of the tab. It
contains alist of queries, which are thus loaded in the queries’ history and accessible for
easy future access. This feature is enabled upon the selection of the API to be used.

NOTE: Due to Interprolog, one may experience difficulties when loading an ontology

once another has already been loaded. In this situation the application should be
restarted.

23

CSof TUCN, MLP Group

Portable Ontology Query Language (POQL)
Research Report, July 25, 2002

5 Experimental Results

We chose to test POQL with ontologies built in Protégé 2000 [5], [9] and OntoWorks
[13] knowledge base creational environments. Our decision was based on the fact that,
among other, they present the advantage of integrating the OKBC model. We specially
created an ontology structure inspired from the one presented in Query Language for
KRML [12]. The results are shown for the above-mentioned ontologies and queries with
various complexities, obtained on an Athlon XP 1800+, using the OntoWorks platform
(although POQL may just as well be integrated in Protégé 2000).

5.1 Comprehensive Query Languagefor KRML
In order to show the results we have obtained in regards to the specifications in Query

Language for KRML [12], we created an ontology structure with 82 frames,
R_Ont ol ogy, inspired from the one presented in the above mentioned paper.

HR,Onlulugy OntoWorks (C:\di\Rudiger-Ontology\R_Ontology. ppri)

Project Edit Window Help

Dl=la] [o]] 2w

r@ Classes Slots rl:l]l Forms r@ Instances rM PoQL |

Classes E: Direct Instances E:|5Ims E
[THING A ko ruediger S ives-in
©-(C) SYSTEM-CLASS A K2 walter S| DIRECT-TYFE
@ (O clagsh k2 otio 8] name
¢ (0):STANDARD-CLASS : |S] parent
@ (E) tangible-thing i 18] :namE
(B living-thing B of[S] sex
(E)lerning_system 3 3
© (D) sL0TA
© (D) FACETA
@ (C) .COMSTRAINTA
@ (E)ANMOTATION A
(S ety
9 (© person
man
(Tl waran
(D) address Clear list
+# ?Instance isa 'man’ HM

?Instance ; ‘person’?|

elli
ruediger
walter

-/ 'R_Ontology_00025° : 7Class

/' ?Class sub ‘person*

~/ 'woman' : ?Class

~ 'sex’ sub 7Slot

" 75lot :: "hiological-attribute’

~ ?Instance = ‘R_Ontology_00026" Tives-in*

- ?InstanceClass : “tangible-thing'

/" ?InstanceClass isa “Jiving-thing'

/" ?Class :: ‘person’

- ?Instance : 'person’, ZInstance isa ?Class, ZInstance.fves.in' == "R_Ontology_00021'

+/ ?Instance : 'person’, Zinstance isa ?Class, ?Instance.lves-in' i=="R_Ontology_00021"
+/ ?Instance : ‘person’, 7instance isa 7Class, not{?Instance. lives-in'=="R_Ontology_00021
- not{?Instance‘lives-in'=="R_Ontology_00021Y), 7instance isa 7Class, 7Instance : ‘person’
-/ ?Instance : 'person’, ?Instance.'parent”.lives-in' == 'R_Ontology_00021"

Queryresult:true N

/" ?Instance : ‘person’; "parent’ =

/" ?A:'person’,?A isa 'woman'
~/ 7. 'person’,not{not(7A isa ‘woman'yy
~# ?A: 'person’, not{{?A.lives-in’ == 'R_Ontology_00021" ; ZA.'lives-in’ =='R_Ontology_00023'))

1.lives.in’ == 'R_Ontology_00021"
" TR ="R_ONtolotx persans whasa parent vas In Berlin, and their parents kOntology_00020'parent{2R-lves.in'~7S. lnes in'; R lives.in'=?1.lves.in}

+ ?A: 'persan’, (not(?A./lives-in' == ‘R_Ontolagy_00021% , not (7A. lives-in* =='R_Ontology_00023%)

tesearch Report

In order to have an easy way to query this ontology, we have generated the
R_Ont ol ogy. deno file, which comprises queries which comprehensively include the
use cases presented in Query Language for KRML. All these queries were executed both

24

CSof TUCN, MLP Group

Portable Ontology Query Language (POQL)
Research Report, July 25, 2002

using the OntoWorks APl and the Protégé API, presenting the response time in both
situations. The results are shown in the following table.

No. POQL Query for R_Ontology [12] (no. of Protégé | OntoWo
crt. frames = 82) API rks API
(seconds) | (seconds)
1. | ?Instance isa 'man' 0.040 0.030
?l nstance
ruedi ger
wal t er
otto
2. | ' R_Ontol ogy_00025" : ?d ass 0.040 0.030
?C ass
man
person
: TH NG
3. | ?A ass sub 'person' 0.041 0.040
?d ass
man
wonman
4. | "woman' :: ?C ass 0.040 0.040
?C ass
person
: TH NG
5. | "sex' sub ?Sl ot 0.030 0.050
?Sl ot
bi ol ogi cal -attri bute
6. | ?Slot :: 'biological-attribute' 0.030 0.030
?Sl ot
sex
7. | ?Instance = 'R _Ontol ogy_00026".'1lives-in' 0.030 0.020
?l nst ance
nuenchen
8. | ?InstanceC ass isa ':living-thing 0.040 0.030
?l nst anced ass
man
person
wonman
9. | ?Cass :: 'person 0.040 0.040
?C ass
man
wonman
10.| ?Instance : 'person', ?lnstance isa 0.110 0.120
?C ass, ?Instance.'lives-in' ==
' R_Ont ol ogy_00021"
?l nst ance ?Cl ass
ruedi ger man
ni na wonan
11.| ?Instance : 'person', ?lInstance isa 0.130 0.121
?Cl ass, ?lnstance.'lives-in' \==
' R_Ont ol ogy_00021"
?l nst ance ?Cl ass
wal t er man
otto man
elli wonman
| ui se wonan

25

CSof TUCN, MLP Group

Portable Ontology Query Language (POQL)
Research Report, July 25, 2002

No. POQL Query for R_Ontology [12] (no. of Protégé | OntoWo
crt. frames = 82) rks API
(seconds) | (seconds)
12.| ?Instance : 'person', ?lnstance isa 0.131 0.110
?C ass, not(?lnstance.’'lives-
i n'=="R_Ontol ogy_00021")
?I nstance ?Cl ass
wal t er man
otto nan
el li wonan
| ui se womrman
13.| not (?Instance.'lives-in' == 0.161 0.140
"R_Ontol ogy_00021'), ?lnstance isa
?C ass, ?lnstance : 'person’
?I nstance ?Cl ass
wal t er man
otto nan
el li wonan
| ui se woman
14.| ?I nstance : 'person', 0.120 0.100
?l nstance. ' parent’'.'lives-in'" ==
' R_Ont ol ogy_00021"
?I nst ance
ruedi ger
wal t er
elli
15.| ?I nstance : 'person', ?lnstance.'parent' = | 0.120 0.140
?l nstancel, ?Instancel.'lives-in' ==
' R_Ont ol ogy_00021"
?I nst ance ?I nst ancel
ruedi ger ni na
wal t er ruedi ger
elli ruedi ger
16.| 7R = ' R_Ontol ogy_00025"' . "' parent' , ?S = 0.050 0.060
'R_Ontol ogy_00024'. "' parent', ?T =
'R_Ontol ogy_00029'. "' parent', (?R "lives-
inf =2?S 'lives-in'; ?R'lives-in" =
?T."lives-in')
?R ?S 2T
ruedi ger ni na [1
17.| ?A : 'person',?A isa 'wonman' 0.100 0.100
?A
elli
[ui se
ni na
18.| ?A : 'person',not(not(?A isa 'wonan')) 0.130 0.130
?2A
elli
| ui se
ni na
19.| ?A : 'person', not((?A.'lives-in" == 0.090 0.100
'R _Ontol ogy_00021" ; ?A.'lives-in'
==' R_Ont ol ogy_00023"))
?A
wal t er
elli
| ui se

26

CSof TUCN, MLP Group

Portable Ontology Query Language (POQL)
Research Report, July 25, 2002

No. POQL Query for R_Ontology [12] (no. of Protégé | OntoWo
crt. frames = 82) API rks API
(seconds) | (seconds)

20.| ?A : 'person', (not(?A.'lives-in == 0.090 0.090

"R _Ontol ogy_00021') , not (?A.'lives-in
==' R_Ont ol ogy_00023"))

?A

wal t er

elli

| ui se

5.2 Extending the OKBC Assertion Language

Due to the inner incompleteness of the Prolog with freeze computational model, one
might phrase queries which are indefinitely postponed (undefined) (e.g. ?A sub ?B).
For such queries, an error message isissued: “Unbound Variables Exception”.

We shall refer as acceptable (defined) queries to al other queries (i.e. — queries which
are not indefinitely postponed). For these queries, we have demonstrated their
soundness in section 2.3. Many of the indefinitely postponed queries may be
transformed to be acceptable by enriching the specification of the query (e.g. for the
above example, atransformed acceptable formis?A :: ‘: THING, ?A sub ?B).

All extensions of POQL as compared to the OKBC Assertion Language [6] (the use of
disjunction, negation and so on) refer implicitly to acceptable queries and ensure the
return of the correct answer (see section 2.3).

All queries in the above table are acceptable queries. The use of logical operators
allows the construction of syntactically different queries athough semantically
equivalent. For instance, the queries 11, 12, and 13 in the above table, though phrased in
a different form, have the same semantic and therefore return the same answer. Their
semantic negation is given as query 10, and the answer is negated as well.

As an emphasis, for acceptable queries, double negation and the applying of
DeMorgan’s Laws both work, due to the safety of negation as failure ensured by the
Prolog with freeze, as illustrated in the queries 17, 18 for double negation
(not(not (A)) « A), respectively 19, 20 for DeMorgan's Laws (not (A; B) o
not (A), not(B)).

5.3 Beyond the “peculiarities” of SQL

In [2] on page 129, H. Garcia-Molina, reports “the peculiar way in which SQL handles
OR operations in where-clauses. Supposing we have three unary relations R, Sand T,
and we wish to compute R »n (S /7 T). Supposing each of these relations has a single
attribute A, we might expect the following SQL query to do the trick.

27

CSof TUCN, MLP Group

Portable Ontology Query Language (POQL)
Research Report, July 25, 2002

select R A
fromR S, T
where RA =S Aor RA=T.A

Unfortunately, if T is empty, the SQL result is empty, even if there are elements in
RNS'.

Fortunately, POQL completely eliminates these shortcomings, in a similar fashion to
the LOREL language, aso presented by Molinain [2].

As an illustration of this, the very same example is shown in POQL form in query 16 in
the above table, where we obtain the expected correct answer, although T is empty.

5.4 Checking Ontology Consistency

POQL was tested on a number of four ontologies, with complex queries representing
various consistency checking. All queries were run both using the Protégé and the
OntoWorks API. The following tables show the number of results along with the
execution time. All queries may be found in the associated files:
Level 8-wi thConstr-Restriction. denp, News paper - queri es. deno,
Organi zat i onal _Model . denp and are available for consulting if the demo check
box is checked. The consistency tests refer to the multiple inheritance property(queryl),
the list of classes which have at least two distinct subclasses(query 2), common
boundaries of trees rooted in different classes(query 3) and so on. The tests show both
the possibility of querying different ontologies and the complexity of the queries
themselves. The large values for the response time correspond to complex queries
which search thoroughly the ontology space.

Level 8-wi thConstr-Restriction — 331 franes

Query Prot égé | OntoWwsrks | No. of
API API results
(seconds) (seconds)
1| ?0assA :: '":THING , ?C assA sub ?SuperAl, 13. 850 7.551 6
?C assA sub ?Super A2, ?Super Al \ ==?Super A2
2 | ?2CassA :: ":THING , ?SubAl :: ?d assA, 111. 080 114.134 8900
?SubA2 :: ?C assA, ?SubAl \ == ?SubA2
3 | ?C assA sub ": THING, ? O assB sub 11. 066 21. 040 37

'":THING, ? ClassB \== ?C assA, ?Istds ::
? ClassA, ?lstds : ? ClassB

4 | ? ClassA sub 'EveryThing', 0. 050 0. 030 1
‘smal | Di esel Motor-1" : ? C assA

5| 7? ClassA :: ':DCX_CF_SYSTEM CLASS', ? 6. 299 6.198 2
ClassB :: ':DCX _CF_SYSTEM CLASS' , ? d assA

\ ==?C assB, ?SubA sub ? O assA, ?SubB sub ?
ClassB, ? C assA sub ?SuperAB, ? O assB sub
?Super AB

28

CSof TUCN, MLP Group

Portable Ontology Query Language (POQL)

Research Report, July 25, 2002

Newspaper -queries — 189 Franes;
(http://protege.stanfor d.edu/ontologies.html)

Query Prot égé | Ont oWwrks | No. of
API API results
(seconds) (seconds)
?CassA :: ':THING , ?Cd assA sub ?SuperAl, 4.300 4.100 6
?Cl assA sub ?Super A2, ?Super Al \ ==?Super A2
?C assA :: '":THING , ?SubAl :: ?d assA, 7?SubA2 | 5. 047 5.377 192
?C assA, ?SubAl \ == ?SubA2
?C assA sub ': THING, ?C assB sub ':THI NG, 9.614 13. 990 20
?C assB \== ?C assA, ?IstCds :: ?C assA ?IstCs
?C assB
?InstanceAB isa ?_CO assA, ?lnstanceAB isa 0. 350 0. 320 7
? ClassB, ? _ClassA :: '"Author' , ?_CassB ::
' Person’
(?I nstanceA isa 'Personal s_Ad'; (?InstanceB isa 0. 300 0.281 4
"Article',
?l nstanceB. ' contai ni ng_secti on' =?I nst anceVal ueB,
?I nstanceVal ueB. ' secti on_nanme'\=="Lifestyle")),
?I nstanceB. ' publ i shed_i n' =?I nst anceA,
?l nst anceA. ' nunber _of _pages' =?InstanceVal ueA,
not (?1 nst anceVal ueA<35)
Organi zati onal _Model — 163 Franes;
(http://protege.stanfor d.edu/ontologies.html)
Query Prot égé | Ont oWorks | No. of
API API results
(second (seconds)
s)
?C assA :: ':THING , ?d assA sub ?SuperAl, 3.975 12. 388 4
?0 assA sub ?Super A2, ?Super Al \ ==?Super A2
?0 assA ?Super Al ?Super A2
Organi zat i onal _Model _Di agr am Net wor k Organi zati onal _Model _Entity

Organi zati onal _Model _Di agr am

Organi zati onal _Model _connector Connect or

Organi zati onal _Model _Entity
Organi zati onal _Model _Entity

Net wor k

Organi zati onal _Model _connector Organi zational _Mddel _Entity Connect or
?C assA :: '":THING , ?SubAl :: ?C assA, ?SubA2 7.451 11.418 780
?C assA, ?SubAl \ == ?SubA2
?C assA sub ': THING, ?C assB sub ': TH NG , 1.142 1.231 33
?C assB \== ?0 assA, ?IstCls :: ?CassA ?IstCs
?C assB
?C assA :: 'DiagramEntity', ?ClassB 21.591 31.385 7
;' Organi zational _Model _Entity', ?SubAB sub
?C assA, ?SubAB sub ?d assB
?InstanceA isa 'Point', ?lnstanceA 'x' =130, 0. 350 0. 280 1
?I nstanceA. 'y' =?l nst anceVal ueA, ?InstanceB isa
' (bj ect Location',
?I nstanceB. ' | ocati on' =?I nst anceVal ueB,
(?I nstanceVal ueB. ' | ower _ri ght _corner' =?I nstanceA
; ?InstanceVal ueB. ' upper_| eft_corner'
=?l nst anceA)
?InstanceA : ?C ass, ?lnstanceB : ?C ass, 10. 828 4. 846 48
?lnstanceB.' x' \== ?lnstanceA 'Xx', ?lnstanceA =
' | NSTANCE_00016'

29

CSof TUCN, MLP Group

Portable Ontology Query Language (POQL)
Research Report, July 25, 2002

6 Conclusions and Possible Further Developments

We have described in this paper our approach regarding the development,
implementation and usage of POQL, a new language for solving investigations in a
portable knowledge base. It presents several advantages over other querying tools:

» it alows a query syntax that follows the Prolog logical form, therefore enabling
the further development of interfaces that would communicate with our tool
(i.e. Natural Language Interfaces, which make possible for users that are not
familiar with the given ontologies to ask them queries.);

» the use of a Prolog with freeze meta-interpreter brings the possibility of
generating complex queries; the solutions are computed taking advantage of the
backtracking mechanism and the postponing technique. As a possible future
development, one might extend the Prolog constraints with general expressions,
also making use of a postponing technique;

» queries are introduced in the interface in a Prolog like manner, without being
restricted to certain patterns, which leads to increased flexibility in searching the
solution space;

* (queries are parsed before sending them to the Prolog resolution mechanism, thus
eliminating syntactic errors and ensuring the use of frame names belonging to
the knowledge base space, before calling the Prolog solver;

e it contains a user friendly interface, integrated in both the Protégé 2000 and
OntoWorks environments, which take full advantage of the possibilities of the
described query language.

POQL conforms to the Prolog logica form, thus being independent towards any
specific knowledge base creationa environment. Its independence renders it fit for
usage in other such environments and for future developments of interfaces that would
communicate with POQL. Our implementation allows further developments for
ontol ogies merging theory support (by using axiom-predicate as defined in section 2.2).

As stated in section 2.1., POQL overcomes the limitations of the OKBC Assertion
Language [6] by introduction of disjunction, negation, relational operators, and also the
limitations of OQL and SQL mentioned in [2]. The above statements are sustained by
the examples presented in sections 5.2 and 5.3. Also, as stated in the same section, the
distinction between classes and instances is not an absolute one due to the existence of
metaclasses. Still, the current implementation of the POQL Kernel provides methods
concerning metaclasses, which are not used in the present version. They might represent
future development starting points for KRSs used for ontologies in which the
distinction between classes and metaclasses is functionally relevant.

7 Acknowledgements
The authors wish to thank Kalman Pusztai form TUCN and Mugur Tatar from DC AG

for the initiation of this contract, and also to Ruediger Klein for the professional
collaboration during the development of this research project.

30

CSof TUCN, MLP Group

Portable Ontology Query Language (POQL)
Research Report, July 25, 2002

8 References

[1] Eriksson, H., Fergerson, RW., Shahar, Y. & Musen M. A. (1999). Automatic Generation of Ontology
Editors. Twelfth Banff Knowledge Acquisition for Knowledge-based systems Workshop, Banff,
Alberta, Canada.

[2] Molina, H. G., Papakonstantinou, Y ., Quass, D., Rgjaraman, A., Sagiv, Y., Ullman, J,, Vassalos, V. &
Widom, J. (1997). The TSIMMIS approach to mediation: Data models and Languages. Journal of
Intelligent Information Systems, 8(2), pag. 117-132.

[3] Muresan, T., Potolea, R., Muresan, S. (1998). Amalgamating CCP with Prolog, Scientific Journal of
Technical University Timisoara, Vol.43,57, no4, 1998, Special Issue Dedicated to Third
International Conference on Technical Informatics, CONTI’98, Romania, pag.47 - 58 .

[4] Musen, M.A., Fergerson, RW., Grosso, W.E., Noy, N.F., Crubezy, M. & Gennari, JH. (2000).
Component-Based Support for Building Knowledge-Acquisition Systems. Conference on Intelligent
Information Processing (I1P 2000) of the International Federation for Information Processing World
Computer Congress (WCC 2000), Beijing.

[5] Noy, N.F., Fergerson, RW. & Musen M.A. (2000). The knowledge model of Protege-2000:
Combining interoperability and flexibility. 2th International Conference on Knowledge Engineering
and Knowledge Management (EKAW 2000), Juan-les-Pins, France.

[6] Chaudhri, V.K., Farquhar, A., Fikes, R., Karp, P.D. and Rice, J.P. (1998). OKBC: A Programmatic
Foundation for Knowledge Base Interoperability. Proceedings of the Fifteenth National Conference
on Artificial Intelligence (AAAI —98), Madison, Wisconsin, AAAI Press.

[7] Noy, N.F., Musen, M.A. (1999). An Algorithm for Merging and Aligning Ontologies: Automation
and Tool Support. Sxteenth National Conference on Artificial Intelligence (AAAI-99), Workshop on
Ontology Management, Orlando, FL.

[8] Gruber, T.R. (1991). A trandlation approach to portable ontology specifications. Knowledge
Acquisition, 5, pag. 199-220.

[9] Grosso, W., Eriksson, H., Fergerson, R., Gennari, J.,, Tu S., and Musen, M. (2000). Knowledge
Modeling at the Millenium (The Design and Evolution of Protégé-2000), Stanford University.

[10] Noy, N.F., Musen, M.A. (2001). Anchor-PROMPT: Using Non-Local Context for Semantic
Matching. Proceedings of the Workshop on Ontologies and Information Sharing at the Seventeenth
International Joint Conference on Artificial Intelligence (IJCAI-2001), Seattle, WA.

[11] Janssen T. (1997). Compositionality. J. van Benthem and A. ter Meulen, editors, Handbook of Logic
and Language,and Linguistics, pages417-473. Elsevier Science.

[12] Rudiger K. A guery constraint language for KRML, Daimler Chrysler AG.

[13] Hildebrandt, H., Lukibanov, O.Y ., Keutgen, |., OntoWorks Tutorial, Daimler Chrysler AG.

[14] Noy, N.F., Musen, M.A. (2000). PROMPT: Algorithm and Tool for Automated Ontology Merging
and Alignment, Proceedings of the Seventeenth Conference on Artificial Intelligence (AAAI 2000),
Austin, Texas.

[15] Saraswat, V.A. Concurrent Constraint Programming 1993, MIT Press, ACM Doctoral Dissertatio
Award and Logic Programming Series.

[16] Cimpian, E., Mocan, A., Popovici, R., Tarcea H. (2002). KBQL: A Query Language for Protégé
Based Ontologie, International Conference on Autometion, Quality and Testing, Roboatics, Cluj-Napoca,
Romania.

[17] Sintek M. The Flora Query Tab, Querying Protégé 2000 with F-Logic. 2002. http://dfki.uni-
kl.de/~sintek/FloraTab.

[18] X SB Prolog Reference. http://xsh.sourceforge.net

[19] JavaCC, http://mwwv.webgain.conVproducts/java_cc/

[20] Java, http://java.sun.convj2se/

31

CSof TUCN, MLP Group

Portable Ontology Query Language (POQL)
Research Report, July 25, 2002

9 APPENDIX A - Prolog Metainterpreter

%**

%
% QUERI ES SEMANTI C / Met a-i nterpreter of Prolog with freeze
%

%**

semantic(X, S):-!,semfreeze(X T/T, S).

sem freeze(X) --> {!}, semantic(X) , sem queue.

sem freeze(X Val) --> {!},semantic(X, Val), sem queue.
semantic((Gl, &R)) --> {!},semfreeze(CGl), sem freeze(XR).
semantic((GL; &)) --> {!},(semfreeze(Gl);semfreeze(R)).
semantic(not(Goal)) --> {!}, postpone_n(Goal).

semantic((nott(Goal))) --> semfreeze(Goal), {!, fail}.
semantic((nott(GGal))) --> {!}.

semantic(CGoal) --> {functor(Goal,F,_), poqgl _op(F), !}, postpone(Coal).

semantic(CGoal) --> {Goal=..[F X, Y], eq_op(F), !}, semfreeze(X VX,
sem freeze(Y,VY), {Goall = .[F VX VY]}, system Coall).

semantic(Goal) --> {Goal=..[F, X,Y], math_op(F), !}, semfreeze(X VX),
sem freeze(Y,VY), {nunber(VX), nunber(VY), Goall = .[F, VX VY]},
system(Goal 1).
semantic(X, X) --> {(var(X);atomc(X)),!}.
semanti c(A@) --> {var(B), !}, postpone_p(dot3(A B)).
semanti c(A@@) --> {!}, semfreeze(dot3(A B), V), semfreeze(V@).
semantic(A@) --> {!}, postpone_p(dot3(A B)).
post pone_p(dot3(A B)) --> {!}, freeze((A+A), sdot(A B)).
semanti c(A@,V) --> {var(B),!}, postpone_p(dot3(A B),V).
semanti c(A@@, Val) --> {!}, semfreeze(dot3(A B),V), semfreeze(V@, Val).
semanti c(A@, V) --> {!}, postpone_p(dot3(A B),V).
semantic(dot3(A B),V) --> {!}, postpone_p(dot3(A B),V).
post pone_p(dot3(A B),V) --> {!}, freeze((A+A), dott3(A B,V)).
semantic(CGoal) --> {axiompredicate(Coal), !}, user(Coal).
semantic(CGoal) --> {!}, systen(Coal).
user(Goal) --> {clause(Coal, Body)}, semfreeze(Body).

system(true) --> {!}.
system(Goal) --> {!, Goal }.

post pone_n(CGoal) --> {var_set(Goal, SetVar)}, freeze_n(SetVar, Goal).

32

CSof TUCN, MLP Group

Portable Ontology Query Language (POQL)
Research Report, July 25, 2002

post pone(Goal) --> {Goal=..[Op, X, Y], rename(Op, Opl), Coall = .[Opl, X Y]},
freeze((X+Y), Goal 1).

freeze_n(SetVar, Goal) --> {ground_set(SetVar), !}, semfreeze(nott(CGoal)).
freeze_n(C Goal,Ti/ (freeze_n(C, Goal),To),Ti/To):-!.

freeze((X+Y), Goal) --> {(nonvar(X);nonvar(Y)), !}, semfreeze(Coal).
freeze(C Goal,Ti/ (freeze(C Goal),To),Ti/To):-!.

resuspend(X, Ti/To, (X, Ti)/To).

sem queue(S/S,S/IS) - var(9),!.
sem queue((freeze((X+Y), Goal), Ti)/To, So):-var(X),var(Y),!,

sem queue(Ti/To, S),!, resuspend(freeze((X+Y), Goal), S, So).
sem queue((freeze(_,(Goal)),Ti)/To,So):-!,sem freeze(Coal, Ti/ To, So).

sem queue((freeze_n(SetVar, Goal), Ti)/ To, So):-not (ground_set(SetVar)),!,
sem queue(Ti/To, S),!, resuspend(freeze_n(SetVar, Goal), S, So).
sem queue((freeze_n(_,(Goal)),Ti)/To,So):-!, semfreeze(nott(CGoal), Ti/To, So).

axiom predi cate(Q:- functor(GF,_), axiompred_list(L), menber(F,L).

axiompred_list(L) :- L =1[].
poql _op(Op):- nenber(Op,[:, ::, isa, sub]).
eq_op(Q) :- member(Qp,[= == \=5]).

math_op(Qp) :- nenber(Op, [<, >, >=, =<]).

rename(isa, isaa).
rename(:, 7).
rename(::, ::").
rename(sub, subb).

%**
%

% ATOM C QUERI ES SENANTI C

%
%**
%

% The foll ow ng equival ences hold true:

%

% poqgl -op(a, B) <=> forall (X, poql-op(a, X), Lx), nmenber(B, Lx)

%

% forall (X, pogl-op(a, X), Lx) <=> api(a, _, pogl-op), result(yes, Lx)
%

% where api(a, _, poqgl-op), result(yes, Lx) represents a Java APl call
%
%***
%************** - SUbC|aSS (dlreCt or IndlreCt) kkhkkkhkkhkkkhkkkhkhkkhkhkkhkkkk*x*k
1- 0op(300, xfx, [::,::7]).

iMNA B) - var(A),!,api(_, B, ::), result(yes,Lx), menber(A Lx).
:NA B) - var(B),!,api(A _, ::), result(yes,Lx), nenber(B, Lx).

iNA B) - api(A B, ::), result(yes, _).

%*************** sub - dl rect SUbCl ass R R O S S R O O O
:- op(300, xfx, [sub, subb]).

subb(A, B) :- var(A),!,api(_, B, sub), result(yes, Lx), menber(A Lx).
subb(A, B) :- var(B),!,api (A _, sub), result(yes, Lx), nenber(B, Lx).

subb(A, B) :- api(A, B, sub), result(yes, _).

33

CSof TUCN, MLP Group

Portable Ontology Query Language (POQL)
Research Report, July 25, 2002

%*************** - InStanceS(dII’ect Or indirect)********************
1= op(300, xfx, [:, :7]).

NA B) - var(A),!,api(_, B, :), result(yes, Lx), nenber(A Lx).

NA, B) - var(B),!,api (A _, :), result(yes, Lx), nenber(B, Lx).

NA B) - api(A B, :), result(yes, _).

%(*************** iSa - dlreCt |nStanCE‘S LR R I R R R

:- op(300, xfx, [isa, isaal).
isaa(A, B) :- var(A),!,api(_, B, isa), result(yes, Lx), nenber(A Lx).

isaa(A, B) :- var(B),!,api (A _, isa), result(yes, Lx), nenber(B, Lx).
isaa(A, B) :- api(A B, isa), result(yes,).
%c**************) <=> @ - attrlbutes' Val ues (dott3’ Sdot)*************
;- op(150, xfy, @.
dott3(A B, V) :- nonvar(A), nonvar(B), !, api (A B, @, result(yes,LV),
(LV =[] ->V =1][]; nmenber(V, LV)).
dott3(A B, V) :- var(B), !, api(A _, @, result(yes, LB),
(LB ==1[] -> B =1[]; menber(B, LB)), dott3(A B,V).
sdot (A, B) :- nonvar(A), nonvar(B), !, api(A B, @, result(yes, _).
sdot (A, B) :- var(B), !, api(A _, @, result(yes, LB),

(LB ==[] -> B = []; nenber(B, LB)).

CSof TUCN, MLP Group

Portable Ontology Query Language (POQL)
Research Report, July 25, 2002

10 APPENDIX B - Knowledge Base Accesss Methods

We give here alist of POQL _API methods one may use to access a knowledge base.

/**
* sets new Protege Know edge Base
* @aram kb edu. stanford. snmi . protege. nodel . Know edgeBase
*/
public static void set Know edgeBase(kb)

/**
* sets new OntoWorks Know edge Base
* @aram kb edu. stanford. snm . protege. nodel . Know edgeBase
*
/
public static void set ON _Know edgeBaseManager (kb)

/**
* sets new Prol og Engine
* @aram prol ogEngi ne com decl arati va. i nterprol og. Prol ogEngi ne
*/
public static void setProl ogEngi ne(prol ogEngi ne)

/**
* checks if cls is the name of a class
* @aramcls java.lang. String
* @eturn com utcn. POQL. ont ol ogyAccess. Resul t
*/
public static Result isd ass(cls)

/**
* checks if slot is the name of a slot
* @aramslot java.lang. String
* @eturn comutcn. POQL. ont ol ogyAccess. Resul t
*/
public static Result isSlot(slot)

/**
* checks if netaCs is the nane of a netaclass
* @arammetad s java.lang. String
* @eturn comutcn. POQL. ont ol ogyAccess. Resul t
*/
public static Result isMetaclass(netad s)

/**
* gets list of names for direct Instances of the class cls
* @aramcls java.lang. String
* @eturn comutcn. POQL. ont ol ogyAccess. Resul t
*/
public static Result getDirectlnstances(cls)

/**
* gets list of names for all Instances (direct or indirect)of
class cls
* @aramcls java.lang. String
* @eturn com utcn. POQL. ont ol ogyAccess. Resul t
*/
public static Result getlnstances(cls)

/**

* checks if son is a subclass of parent

35

t he

CSof TUCN, MLP Group

Portable Ontology Query Language (POQL)
Research Report, July 25, 2002

* @aramson java.lang. String
* @aram parent java.lang. String
* @eturn com utcn. POQL. ont ol ogyAccess. Resul t
*/
public static Result subclassOf(son, parent)

/**
* checks if son is a direct subclass of parent
* @aram son java.lang. String
* @aram parent java.lang. String
* @eturn comutcn. POQL. ont ol ogyAccess. Resul t
*/
public static Result directSubclassOf(son, parent)

/**
* checks if parent is a superclass of son
* @aram parent java.lang.String
* @aramson java.lang. String
* @eturn comutcn. POQL. ont ol ogyAccess. Resul t
*/
public static Result superclassO (parent, son)

/**
* checks if parent is a direct superclass of son
* @aram parent java.lang. String
* @aram son java.lang. String
* @eturn comutcn. POQL. ont ol ogyAccess. Resul t
*/
public static Result directSuperclassO(parent, son)

/**
* checks if parent is a direct superslot of son
* @aram parent java.lang. String
* @aramson java.lang. String
* @eturn com utcn. POQL. ont ol ogyAccess. Resul t
*/
public static Result directSuperslotCO (parent, son)

/**
* checks if son is a direct subslot of parent
* @aram son java.lang. String
* @aram parent java.lang. String
* @eturn comutcn. POQL. ont ol ogyAccess. Resul t
*/
public static Result directSubslotOf (son, parent)

/**
* checks if parent is a superslot of son
* @aram parent java.lang.String
* @aramson java.lang. String
* @eturn com utcn. POQL. ont ol ogyAccess. Resul t
*/
public static Result superslotO (parent, son)

/**
* checks if son is a subslot of parent
* @aram son java.lang. String
* @aram parent java.lang. String
* @eturn comutcn. POQL. ont ol ogyAccess. Resul t
*/
public static Result subslotO (son, parent)

/**
* checks if inst is a direct instance of cls
* @araminst java.lang. String

36

CSof TUCN, MLP Group

Portable Ontology Query Language (POQL)
Research Report, July 25, 2002

* @aramcls java.lang. String
* @eturn com utcn. POQL. ont ol ogyAccess. Resul t
*/

public static Result directlnstanceO (inst, cls)

/**
* checks if inst is a instance of cls
* @araminst java.lang. String
* @aramcls java.lang. String
* @eturn comutcn. POQL. ont ol ogyAccess. Resul t
*/
public static Result instanceOf(inst, cls)

/**
* gets the direct type(class) of instance inst
* @araminst java.lang. String
* @eturn comutcn. POQL. ont ol ogyAccess. Resul t
*/
public static Result getDirect TypeOf (inst)

/**
* gets the type(class) of instance inst
* @araminst java.lang.String
* @eturn comutcn. POQL. ont ol ogyAccess. Resul t
*/
public static Result getTypeO (inst)

/**
* gets list of names for all superslots of slot slot
* @aramslot java.lang. String
* @eturn comutcn. POQL. ont ol ogyAccess. Resul t
*/
public static Result getSuperslots(slot)

/**
* gets list of names for all direct superslots of slot slot
* @aramslot java.lang. String
* @eturn com utcn. POQL. ont ol ogyAccess. Resul t
*/
public static Result getDirectSuperslots(slot)

/**
* gets list of names for all direct subslots of slot slot
* @aramslot java.lang. String
* @eturn com utcn. POQL. ont ol ogyAccess. Resul t
*/
public static Result getDirectSubslots(slot)

/**
* gets list of names for all subslots of slot slot
* @aramslot java.lang. String
* @eturn comutcn. POQL. ont ol ogyAccess. Resul t
*/
public static Result getSubslots(slot)

/**
* gets list of names for all superclasses of class cls
* @aramcls java.lang. String
* @eturn comutcn. POQL. ont ol ogyAccess. Resul t
*/
public static Result getSuperclasses(cls)

/**
* gets list of names for all direct superclasses of class cls
* @aramcls java.lang. String

37

CSof TUCN, MLP Group

Portable Ontology Query Language (POQL)
Research Report, July 25, 2002

* @eturn comutcn. POQL. ont ol ogyAccess. Resul t
*/
public static Result getDirectSuperclasses(cls)

/**
* gets list of nanes for all subclasses of class cls
* @aramcls java.lang. String
* @eturn comutcn. POQL. ont ol ogyAccess. Resul t
*/
public static Result getSubclasses(cls)

/**
* gets list of nanes for all direct subclasses of class cls
* @aramcls java.lang. String
* @eturn com utcn. POQL. ont ol ogyAccess. Resul t
*/
public static Result getDirectSubcl asses(cls)

/**
* gets value of slot at an instance
* @araminstS java.lang. String
* @aramslotS java.lang. String
* @eturn com utcn. POQL. ont ol ogyAccess. Resul t
*/
public static Result getSlotAtlnstanceValue(instS, slotS)

/**
* gets own slots of instance
* @araminstS java.lang. String
* @eturn comutcn. POQL. ont ol ogyAccess. Resul t
*/
public static Result getSlotsAtlnstance(instS)

38

CSof TUCN, MLP Group

Portable Ontology Query Language (POQL)
Research Report, July 25, 2002

11 APPENDIX C - JavaDoc Files

39

student
JavaDoc

