

Research Report

Portable Ontology Query Language
(POQL)

Tudor Muresan, Rodica Potolea, Alin Suciu,
Emilia Cimpian, Adrian Mocan, Radu Popovici, Horatiu Tarcea

Computer Science Department of Technical University of Cluj-Napoca,

Romania,
Multiparadigm Logic Programming Group http://bavaria.utcluj.ro/~suciu/mlp/

{tmuresan, potolea, suciu}@cs.utcluj.ro

{cemilia, madrian, pandrei, tiustin}@asterix.obs.utcluj.ro

Research supported by
DaimlerChrysler AG grant no. 3969000931-F92

July 25, 2002

http://bavaria.utcluj.ro/~suciu/mlp/

CS of TUCN, MLP Group
Portable Ontology Query Language (POQL)

Research Report, July 25, 2002

 1

Table of Contents

1 Introduction...
2 Theoretical Aspects...
 2.1 Open Knowledge Base Connectivity (OKBC) Ontology Frame.....
 2.2 Query Syntax..
 2.3 Computational Model..
 2.4 Query Semantic..
 2.5 Portable Ontology Query Language Architecture...........................
3 Implementation Issues of the POQL Kernel.......................................
 3.1 Protégé integrated interface...
 3.2 Syntactic parser..
 3.3 Prolog module (metainterpreter) ...
 3.4 Prolog/Java POQL API calls..
 3.5 Porting POQL_API on specific platforms.......................................
4 Installation and Utilization Tips..
 4.1 Installation Guidelines...
 4.2 Utilization Guidelines..
5 Experimental Results..
 5.1 Comprehensive Query Language for KRML...................................
 5.2 Extending the OKBC Assertion Language......................................
 5.3 Beyond the “peculiarities” of SQL..
 5.4 Checking Ontology Consistency..
6 Conclusions and Possible Further Developments...............................
7 Acknowledgements...
8 References...
 APPENDIX A – Prolog with freeze Metainterpreter..........................
 APPENDIX B – Knowledge Base Access Methods...........................
 APPENDIX C – JavaDoc Files...

2
3
3
4
5
7
8
9
9

10
11
12
14
20
20
21
24
24
27
27
28
30
30
31
32
35
39

CS of TUCN, MLP Group
Portable Ontology Query Language (POQL)

Research Report, July 25, 2002

 2

Abstract

This research report presents the definition and implementation of a query language
for reusable knowledge bases, which uses the Prolog logical form. The advantage is,
along with the complexity and flexibility of the allowed questions, the fact that it
constitutes a theoretical interface with user friendly querying systems (i.e. Natural
Language Interface (NLI)). Also, it makes use of the Prolog solving mechanism for
an extensive search in the solution space, providing the framework for the
development of theories for automated merging and alignment of existing ontologies.
The goal of this research is achieved by the current implementation of the POQL
Kernel.

Keywords:

logical query language, computational model, knowledge base space searching,
portable ontology, implementation

1 Introduction

A large number of ontologies have been constructed taking into account the principle of
generating reusable knowledge bases by adopting standard representational languages
[2], [9] or by achieving portability through a translational approach [8]. The advantage
of easy knowledge acquisition [1], [4] of the existing tools becomes a weakness from
the querying point of view. Thus, the development of query tools independent of the
ontology representation becomes appropriate [16], [17]. Such query tools serve both for
the development of user friendly query interfaces (i.e. Natural Language Interfaces) and
for the purpose of merging and alignment of the existing ontologies. Furthermore,
currently [7], there are yet extremely few theories or methods which facilitate or
automate the process of reconciling disparate ontologies.

This research report presents the definition and implementation of a query language for
reusable knowledge bases, which uses the Prolog logical form. The advantage is, along
with the complexity and flexibility of the allowed questions, the fact that it constitutes a
theoretical interface with user friendly querying systems (i.e. NLI). Also, it makes use
of the Prolog solving mechanism, for generating all the solutions of a specific search,
providing the framework for the development of theories for automated merging and
alignment of existing ontologies.

In section 2 we give an overview of the theoretical concepts pertaining to a reusable
ontology frame which conforms to the OKBC model [6] and also constitutes a
description of the syntax, semantics, architecture and computational model of POQL.
Implementation issues are detailed in the 3rd section. Section 4 gives brief guidelines
regarding installation and utilization issues. Experimental results are shown in section 5.
We conclude by presenting the conclusions and proposals for further development, in
section 6.

CS of TUCN, MLP Group
Portable Ontology Query Language (POQL)

Research Report, July 25, 2002

 3

2 Theoretical Aspects

2.1 Open Knowledge Base Connectivity (OKBC) Ontology Frame

An ontology is a specification of a representational vocabulary for a shared domain of
discourse. “The OKBC knowledge model defines that classes and individuals form
disjoint partitions of a KB. It does not commit to whether classes, individuals, slots and
facets are represented as frames. It also does not commit to whether slots and facets
should be represented as classes or individuals.

OKBC defines an Assertion Language (AL) for declarative specification of knowledge.
The AL is a first-order language with conjunction and predicate symbols, but without
disjunction, explicit quantifiers, function symbols, negation, or equality. The
predicate symbols of the OKBC AL are class, individual, primitive, instance-of, type-of,
subclass-of, slot-of, facet-of, template-slot-of, template-facet-of, own-slot-value, own-
facet--value, template-slot-value, and template-facet—value” [6].

Our research report takes into consideration the most recent version of the Protégé
knowledge representation system (KRS), Protégé 2000, which incorporates the OKBC
knowledge model. It restricts OKBC to a hierarchy of frames [5], [9], [14].

The standard frame ontology consists of a hierarchy of frames which are organized,
according to their role, into three main categories: classes, slots and facets.

• Classes are concepts in the domain of discourse, collections of objects that have
similar properties; they are arranged into a subclass-superclass hierarchy and
allow multiple inheritance. There are two subcategories for classes: metaclasses
- classes which have as instances other classes, and ordinary classes – which
have ordinary objects as their materialization.

• Slots are named binary relations between a class and either another class or a
primitive object in order to describe properties, attributes of classes or relations
between classes. Slots attached to a class may be further constrained by facets.

• Facets are named ternary relations between a class, a slot, and either another
class or a primitive object; they describe properties of slots and may impose
additional constraints on a slot attached to a class.

• Instances are materializations of classes.

CS of TUCN, MLP Group
Portable Ontology Query Language (POQL)

Research Report, July 25, 2002

 4

A knowledge base includes both the ontology and individual instances of classes with
specific values for their slots. The distinction between classes and instances is not an
absolute one due to the existence of metaclasses.

The above mentioned restriction of Protégé to a hierarchy of frames has allowed us to
further extend semantic of the query language POQL as compared to the OKBC
Assertion Language, thus eliminating AL’s previously mentioned limitations (lack of
disjunction, negation, relational operators and so on, see examples in section 5.2).

Meanwhile, limits of traditional OQL and SQL are surpassed in a functionally similar
fashion to LOREL, a query language developed by TSIMMIS [2] (see example in
section 5.3).

2.2 Query Syntax

The syntax of POQL is comprehensive in relation with the specifications of the
ongoing project, as stated in the definitions of Query Language for KRML, [12]. The
extended syntax refers to the constraints’ specifications.

A query consists of one or many linked atomic queries. The syntax of such connections
follows the Prolog logical form, with conjunctions and disjunctions between
expressions and negation.

<query> ::= <disjunct-query>

<disjunct-query> ::=
 <conjunct-query> |

<conjunct-query> <disjunct-op> <disjunct-query>

<conjunct-query> ::= <atomic query> |
 <atomic query> <conjunct-op> <conjunct-query>

<atomic query> ::=

<term> <poql-op> <term> | <path term> |
<path term> <relational-op> <path term> |
<axiom-predicate> |
‘(‘ <query> ‘)’ | ‘not(‘ <query> ‘)’

<path term> ::=

<term> | <term> ‘.’ <path term>

<term> ::=

’<frame name>’ | ‘?’ <Prolog variable> | <Prolog constant>

<poql-op> ::=
‘isa’ | ‘sub’ | ‘:’ | ‘::’

<relational-op> ::=

 ‘=’ | ‘>=’ | ‘=<’ | ‘<’ | ‘>’ | ‘\==’

CS of TUCN, MLP Group
Portable Ontology Query Language (POQL)

Research Report, July 25, 2002

 5

<logical-op> ::=

<conjunct-op> | <disjunct-op>

<conjunct-op> ::= ‘,’

<disjunct-op> ::= ‘;’

The <poql-op> operators correspond to the relations between frames:
isa direct instance-class relation;
: transitive closure of isa relation;
sub direct inheritance relation;
:: transitive closure of sub relation.

The name of a frame may be simple, referring directly a frame of the knowledge base,
or it may be a path. A path is a concatenation of slots s1, s2, ..., sn, written o.s1.s2....sn,
where o is the frame slot s1 belongs to (class or instance), o.s1 refers the frame slot s2
belongs to and so forth. Such expression has itself a truth value given by the
(non)existence of the path.

2.3 Computational Model

In contrast to [12], the queries’ semantic is formally specified by a meta-interpreter [3]
for Prolog with freeze [15]. The soundness and safety of negation as failure for this
computational model is proven below as in [3].

A SLD refutation procedure for a logic program P and a goal G uses a computation rule
and a search strategy (rule). The computation rule chooses a subgoal from the
sequence of goals to perform the derivation step. A SLD derivation is (said to be) fair if
it ensures any subgoal selection in a finite number of steps (the depth first search
strategy of Prolog is unfair).

The soundness and completeness of a fair SLD refutation has been proved, that is the
equivalence between the logical consequence (P ╞ G) and SLD refutation (P ├ G) .

(P ╞ G) ↔ (P ├ G)

If the negation as failure is taken into consideration, a SLDNF computation rule is said
to be safe if it selects only ground negative literals and it does not interrupt the
corresponding SLDNF finite failure subtree building.

If comp(P) is the Clark completion of a program P, and the SLDNF rule of
computation is safe, the soundness and completeness of SLDNF refutation hold true.

(comp(P) ╞ G) ↔ (P ├ G)

CS of TUCN, MLP Group
Portable Ontology Query Language (POQL)

Research Report, July 25, 2002

 6

Moreover, the soundness and completeness of a SLD refutation are independent of the
chosen computation rule (e.g. the current subgoal selection).

We consider Pf the logic program obtained from P, by enclosing any subgoal Gi of a
clause into a freeze(Var,Gi) predicate, where Var belongs to the set of Gi variable,
Var ∈ SetVar(Gi).

If

H:- B1,..,Bi ,..,Bn ∈ P,
then

H:-B1,..,freeze(Var, Bi),..,Bn ∈ Pf .

A subgoal freeze(Var, Bi) is not selected as long as Var is unbound. On its
selection the equivalence

freeze(Var, Bi) ↔ Bi

takes place.

A fair SLD refutation for a program Pf and a goal G is achieved if the empty clause may
be derived in a finite number of steps. This means that all the subgoals freeze(Var,
Bi) have actually been selected. Taking into consideration the independence of the
choice of the computation rule and the logic equivalence between freeze(Var, Bi)
and Bi in the moment of the selection, we have:

Lemma :

(Pf ├ G) → (P ├ G)
and

Corollary: (Soundness of SLD refutation for programs with freeze.)

(Pf ├ G) → (P ╞ G)

The soundness of Pf programs makes possible the use of Prolog with freeze as target
language for queries interpretation.

Even if the Prolog strategy is an unfair and incomplete one, freeze does not introduce
new exceptions from the theoretical model (comparing with those of standard Prolog).
Moreover, freeze may improve the Prolog program’s behavior, making safe the negative
literals selection (safety of SLDNF refutation). However, the Prolog strategy makes
incompatible the use of freeze together with the cut (‘!’), without imposing special
restrictions.

CS of TUCN, MLP Group
Portable Ontology Query Language (POQL)

Research Report, July 25, 2002

 7

2.4 Query Semantic

The queries’ semantic is formally specified by a meta-interpreter [3] for Prolog with
freeze, in a compositional manner [11]. For the <logical-op> we define:

semantic(Q1 <l-op> Q2) → sem_freeze(Q1) <l-op> sem_freeze(Q2)

where

sem_freeze(Q) → semantic(Q), sem_queue.

For the atomic query QA with <poql-op> we define:

semantic(QA) → postpone(QA)

where

postpone(X <poql-op> Y) → freeze((X,Y), X <poql-op> Y)

The above definition entails that atomic queries are postponed through the freeze
predicate until at least one of its variables becomes instantiated. Postponed atomic
queries are resumed by the sem_queue predicate.

The following equivalences hold true:

 a <poql-op> B ↔ forall(X, a <poql-op> X , Lx),
 member(B, Lx)

forall(X,a <poql-op> X,Lx) ↔ api(<poql-op>)(a,Lx)

where api(<poql-op>)(a,Lx)represents an API call specific to the ontology
representation. These equivalences allow the definition of the semantic for the
postponed atomic queries through the correspondent ontology program interface:

semantic(a <poql-op> B) → api(<poql-op>)(a,Lx),member(B, Lx)

This renders the Prolog search strategy independent of the actual representation of the
queried ontology (Fig. 1).

We shall refer as acceptable (defined) queries to all queries which are not indefinitely
postponed. For such queries, we have demonstrated soundness in section 2.3. Many of
the indefinitely postponed queries may be transformed to be acceptable by enriching the
specification of the query (see section 5.2).

CS of TUCN, MLP Group
Portable Ontology Query Language (POQL)

Research Report, July 25, 2002

 8

2.5 Portable Ontology Query Language Architecture

The architecture of POQL is shown in Fig.1.

A query is entered in a Prolog like logical form, using the interface we have developed.
Subsequently, a parser performs syntax and name checking, converting the query to a
string of our convenience which is further passed to the metainterpreter of Prolog with
freeze. The parser ensures, among other, the correct order of execution for the atoms of
complex queries. We have used a Prolog like strategy of searching through the entire
solution space, thus obtaining all the solutions for our query.

The resolution of the atomic queries is handled by methods specific to the ontology
representation (API). The result of each such atomic query is asserted as a Prolog fact
and further used by the solving algorithm.

The current implementation of POQL ensures queries’ independence from the
representation of the queried ontologies. Furthermore, the system is subject to future
developments, so that it may simultaneously query two distinct ontologies with different
representations. This feature will eventually make possible the integration of an
ontology merging theory [10]. Meanwhile, the user interaction may be enriched with a
Natural Language Interface.

Metainterpreter
Searching the
Solution Space

Query Tab

Query
Parser

Query

KNOWLEDGE BASE 1

Ontology
API for
 Atomic
Queries

Assertion
of results

Atomic
queries

Parsed
query

Solutions

Name
checking

KNOWLEDGE BASE 2

Fig. 1 System Architecture

Parsed
Query

CS of TUCN, MLP Group
Portable Ontology Query Language (POQL)

Research Report, July 25, 2002

 9

3 Implementation Issues of the POQL Kernel

The implementation is focused on several distinct modules: an interface integrated in
Protégé 2000 or OntoWorks [13], a syntactic parser which enforces correctness of
syntax and use of names pertaining to the ontology name space, an API which provides
access to methods querying the structure of the ontology and a metainterpreter which
gives the solving strategy.

For the implementation, we have used two programming languages: Java [20] and XSB
Prolog [18]. The reason for using Java is that Protégé is a Java based environment and
provides an API for easy access to both the representation of the ontology and interface
development.

The syntactic parser is written under JavaCC, a Sun CompilerCompiler [19].

The implementation of the metainterpreter is written in XSB Prolog, which gives a
direct mapping between the logical form of the query and the solving strategy. XSB
Prolog represents a powerful instrument for solving logical forms; also, it uses a
backtracking mechanism that enables us to easily search through the entire solution
space.

All communication between Prolog and Java is performed, back and forth, through the
Interprolog [18], an easy to use interface which converts Java objects to strings in DCG
format and vice versa. This enables Prolog code to call Java methods and Java code to
solve Prolog queries.

A query is entered in a Prolog like logical form, using the interface we have developed.
Subsequently, a parser performs syntax and name checking, converting the query to a
string of our convenience which is further passed to the XSB Prolog resolution
mechanism (Fig. 1). Each query is interpreted by a Prolog metainterpreter [3], which
ensures, among other, the correct order of execution for the atoms of complex queries.
We have used a Prolog like strategy of searching through the entire solution space, thus
obtaining all the solutions for the query.

3.1 Protégé integrated interface

Protégé allows easy development through its structure of Tabs. Once such a Tab is
created, it can be included in the Protégé environment by modifying the manifest.mf
file.

POQLTab presents a multitude of functionalities:

• A class hierarchy panel which gives full browsing control to the classes’
taxonomy. Double-clicking on a class reveals/hides its direct subclasses.

• A direct instances panel which displays the browser texts for the direct
instances of the selected class from the hierarchy panel. Double-clicking on

CS of TUCN, MLP Group
Portable Ontology Query Language (POQL)

Research Report, July 25, 2002

 10

an instance adds the name of the instance to the query. The instance name is
not necessarily similar to the instance browser text. The former identifies
uniquely the frame in the hierarchy of frames, whereas the latter gives a
description of the frame, not necessarily unique in the name space.

• A slots panel which displays own slots of the selected class or instance.
Double-clicking on a slot inserts its name at the current cursor position in the
query.

• A text field where the user enters the desired query and an attached button
which starts the processing.

• All results of a query (bindings of defined variables) are displayed as a table,
below the query text field.

When POQLTab is loaded, method initialize is called: it sets the working
knowledge base, loads the Prolog engine (if it has not already been loaded), loads the
Prolog modules (metainterpreter and resolution clauses), recreates the interface and
initializes the installation path and the path to the plugins directory.

runQuery starts the actual processing. It creates a parser QP for the current query,
calls runParser and creates the Prolog query from the parsed expression and appends
to it the list of variables which are of interest to the user (the defined variable – see the
next section). Then it calls the Prolog metainterpreter with the newly generated query
and further collects all bindings of the defined variables and displays them in a table
like format.

The interface also displays the truth value of the query and the execution time.

3.2 Syntactic parser

The syntactic parser performs syntax checking which ensure that the current query
conforms to the rules described in section 2.2. Furthermore, the parser checks whether
the names which refer to frames of the ontology actually belong to the current name
space. Such names are entered between pairs of the special character \’.

The parser also accepts constant values, such as numbers, strings and the empty set (i.e.
[]). All constants are entered between pairs of the special character \”.

In order to ensure correctness of the execution, it is necessary that frame names do not
comprise characters other than alphanumeric and blanks.

A variable which appears in a query may have two distinct forms, established by its
prefix: ? or ?_. The former is a defined variable – a variable which bindings must
appear in the final result, whereas the latter is an undefined variable – one which has
only a linking role between different parts of the query and the user has no interest in its
meaning but uses it as a liaison (leant).

There are several steps involved in the processing performed by the parser on the initial
query: a new string, parsedExpression, is generated from the initial one, replacing

CS of TUCN, MLP Group
Portable Ontology Query Language (POQL)

Research Report, July 25, 2002

 11

all occurrences of the character \. with \@, due to the way Prolog interprets it. Also
values of constants are replaced with their Prolog correspondent, depending whether
they are numbers (integer or float), strings, boolean or the empty set.

At the same time, a list of defined variables, variableList, is created. It may be
accessed by calling the getVariableList or getVariableAssertionList
methods, which return, respectively, an ArrayList and a String. The list will be
appended to the end of the query, in an assertion clause. All the bindings for this list of
variables are collected by Prolog, after the resolution of the query has completed. They
are then sent from Prolog to Java, as a string, and further interpreted by the POQL
interface.

All processing takes place for a uniquely generated StringBufferInputStream,
which is created from a String passed to the constructor of the class. In order to
process the input stream, the user must call the runParser method, which sets the
working knowledgebase for name checking, initializes parsedExpression and
variableList and starts the actual parsing by calling the one_line method.

As stated in the previous section, the interface is responsible for supervising of the
entire process; after the parsed query is generated, parsedExpression,it is returned
to the POQLTab which further passes it (in a specific logical form) to the
metainterpreter of Prolog with freeze for its resolution.

3.3 Prolog module (metainterpreter)

The Prolog module comprises a metainterpreter for Prolog with freeze and the
respective Java POQL_API calls for the resolution of the atomic queries.

The metainterpreter for Prolog with freeze, extending the one in [3], is given in DCG
form, in extenso, in Appendix A. It preserves the traditional semantic of the computed
answer of the general Prolog queries.

At the same time, the subgoal selection rule is modified, as follows: the leftmost
subgoal having all its input arguments bound is selected first for computation. It follows
that subgoals with unbound input arguments are postponed (see section 2.4.).

There are three types of postponed subgoals:

• An atomic query: ?X <poql-op> ?Y with both arguments unbound
• A path term: ?X ‘.’ <path term> with ?X unbound
• A negated subgoal with unbound inner variables (thus, the safety of negation is

ensured)

The compound queries’ semantic is defined in a compositional manner [11]: the
semantic of the whole is obtained from the semantic of its parts. This is ensured by each
DCG metainterpreter rule.

CS of TUCN, MLP Group
Portable Ontology Query Language (POQL)

Research Report, July 25, 2002

 12

All <poql-op> appearing in postponed atomic queries, are mapped by the rename
predicate to corresponding operators which are directly executed by the Prolog engine
on resuming by the sem_queue predicate.

Initial Operator Renamed Operator
isa isaa
: :^
:: ::^
sub subb
not nott
dot3
@

dott3
sdot

Table. Operators mapping

The api/3 and result/2 predicates are used for the Java POQL API calls (see
Appendix A). The api/3 predicate calls Java API methods through the Interprolog
Interface. The results returned by the Java API are asserted in the Prolog database as
facts of the result/2 predicate.

3.4 Prolog/Java POQL API calls

POQL_API is an abstract class, which ensures a common interface for accessing the
current knowledge base. It delegates the responsibility of implementing its methods to
the classes which inherit it (in our case Protégé_POQL_API and OW_ POQL_API –
see section 3.4.1.).

CS of TUCN, MLP Group
Portable Ontology Query Language (POQL)

Research Report, July 25, 2002

 13

POQL atomic query Prolog POQL API Java POQL API
?A sub ?B Postponed Postponed
?A sub ‘aClass’ getDirectSubclasses(A, aClass) getDirectSubclasses(aClass)
‘aClass’ sub ?B getDirectSuperclasses(aClass, B) getDirectSuperclasses(aClass)
‘aClass’ sub ‘bClass’ directSubClassOf(A,B) directSubclassOf(aClass,bClass)
?A sub ‘aSlot’ getDirectSubslots(A, aSlot) getDirectSubslots(aSlot)
‘aSlot’ sub ?B getDirectSuperslots(aSlot, B) getDirectSuperslots(aSlot)
‘aSlot’ sub ‘bSlot’ directSubSlotOf(aSlot,bSlot) directSubslotOf(aSlot, bSlot)

?A :: ?B Postponed Postponed
?A :: ‘aClass’ getSubclasses(A, aClass) getSubclasses(aClass)
‘aClass’ :: ?B getSuperclasses(aClass, B) getSuperclasses(aClass)
‘aClass’ :: ‘bClass’ subClassOf(A,B) subclassOf(aClass,bClass)
?A :: ‘aSlot’ getSubslots(A, aSlot) getSubslots(aSlot)
‘aSlot’ :: ?B getSuperslots(aSlot, B) getSuperslots(aSlot)
‘aSlot’ :: ‘bSlot’ subSlotOf(aSlot,bSlot) subslotOf(aSlot, bSlot)

?A isa ?B Postponed Postponed
?A isa ‘aClass’ getDirectInstances(A,aClass) getDirectInstances(aClass)
‘anInastance’ isa ?A getDirectTypeOf(anInstance, B) getDirectTypeOf(anInstance)
‘anInstance’ isa ‘aClass’ directInstance(anInstance,aClass) directInstanceOf(anInstance,aClass)

?A : ?B Postponed Postponed
?A : ‘aClass’ getInstances(A,aClass) getInstances(aClass)
‘anInastance’ : ?A getTypeOf(anInstance, B) getTypeOf(anInstance)
‘anInstance’ : ‘aClass’ instance(anInstance,aClass) instanceOf(anInstance,aClass)

?A . ?B Postponed Postponed
?A . ‘aSlot’ Postponed Postponed
‘anInstance’ . ‘aSlot’ getSlotAtInstanceValue(anInstance,aSlot) getSlotAtInstanceValue(anInstance,aSlot)
anInstance . ?A getSlotsAtInstance(anInstance) getSlotsAtInstance(anInstance)

CS of TUCN, MLP Group
Portable Ontology Query Language (POQL)

Research Report, July 25, 2002

 14

POQL_API‘s methods need to be static because of the communication way between
Java and Prolog, which is achieved through Interprolog.

This class contains two types of methods: the first kind is used for initialization and the
latter is used by Prolog for its solving strategy.

• Initialization methods – they initialize internal attributes, such as the
working knowledge base, the Prolog engine and the response list. Also,
there are methods which are used to assert in Prolog the return values for
methods of the latter kind.

• Actual interface methods: there are two distinct functionalities for
methods pertaining to the POQL_API:

1. Methods used for access to the ontology – they reflect the relations

existing between frames: PART-OF, IS-A and their respective transitive
closure. These methods verify the existence of such relations (isClass,
isSlot, directInstanceOf, subclassOf, instanceOf etc.)
or return objects for which such relations apply (getSubclasses,
getDirectInstances, getTypeOf, getSlotsAtInstance etc.)

2. Methods used to access the values of instances of classes (objects, slots)
(getSlotAtInstanceValue).

All these methods have as return value objects of type Result, which
encapsulate both a truth value and a list of objects.

The above table represents the translation of POQL atomic queries to Java calls. The
full methods’ prototypes are given in Appendix B.

3.5 Porting POQL_API on specific platforms

At the present time, there are two distinct implementations of POQL_API, the
Protégé_POQL_API and OW_ POQL_API classes. They use different approaches to
gain access to the knowledge base. Thus, the user can choose the mode of interrogation
for a working knowledge base: using Protégé API, or, respectively, using OW_API. The
former implementation is in final form, whereas the latter is subject to further
developments of the OntoWorks API Model. Due to the fact that the current OntoWorks
API is not in final form, the latter implementation has several unlisted features, which
belong in fact to the API itself. Therefore, this implementation of POQL_API mixes
methods from both the OntoWorks and Protégé APIs.

CS of TUCN, MLP Group
Portable Ontology Query Language (POQL)

Research Report, July 25, 2002

 15

Protégé_POQL_API OntoWorks_POQL_API Java POQL API
Protégé API calls Protégé API calls OntoWorksAPI calls

isClass(String cls) getCls
 from KnowledgeBase

- getClass
from OW_KnowledgeBaseManager

isSlot(String slot) getSlot
 from KnowledgeBase

getSlot
 from KnowledgeBase

getProtegeObject
from OW_KnowledgeBaseManager

isMetaclass(String metaCls) getCls
 from KnowledgeBase

isMetaCls
from Cls

- getClass
from OW_KnowledgeBaseManager
isMetaClass

from OWI_Class
getDirectInstances(String
cls)

getCls
 from KnowledgeBase

getDirectInstances
from Cls

- getClass
from OW_KnowledgeBaseManager
getDirectInstances
from OWI_CollectionOfClasses

getInstances(String cls) getCls
 from KnowledgeBase

getInstances
from Cls

- getClass
from OW_KnowledgeBaseManager
getInstances
from OWI_CollectionOfClasses

subclassOf(String son, String
parent)

getCls
 from KnowledgeBase

hasSuperclass
from Cls

- getClass
from OW_KnowledgeBaseManager
getSubclasses

from OWI_Class
directSubclassOf(String son,
String parent)

getCls
 from KnowledgeBase

hasDirectSuperclass
from Cls

- getClass
from OW_KnowledgeBaseManager
getDirectSubclasses

from OWI_Class
superclassOf(String parent,
String son)

getCls
 from KnowledgeBase

hasSuperclass
from Cls

- getClass
from OW_KnowledgeBaseManager
getDirectSuperclasses

from OWI_Class

CS of TUCN, MLP Group
Portable Ontology Query Language (POQL)

Research Report, July 25, 2002

 16

Protégé_POQL_API OntoWorks_POQL_API Java POQL API
Protégé API calls Protégé API calls OntoWorksAPI calls

directSuperclassOf(String
parent, String son)

getCls
 from KnowledgeBase

hasDirectSuperclass
from Cls

- getClass
from OW_KnowledgeBaseManager
getDirectSuperclasses
from OWI_Class

directSuperslotOf(String
parent, String son)

getSlot
 from KnowledgeBase

getDirectSuperslots
from Slot

getSlot
from KnowledgeBase

getDirectSuperslots
from Slot

getProtegeObject
from OW_KnowledgeBaseManager

directSubslotOf(String son,
String parent)

getSlot
 from KnowledgeBase

getDirectSuperslots
from Slot

getSlot
from KnowledgeBase

getDirectSuperslots
from Slot

getProtegeObject
from OW_KnowledgeBaseManager

superslotOf(String parent,
String son)

getSlot
 from KnowledgeBase

getSuperslots
from Slot

getSlot
from KnowledgeBase

getSuperslots
from Slot

getProtegeObject
from OW_KnowledgeBaseManager

subslotOf(String son, String
parent)

getSlot
 from KnowledgeBase

getSuperslots
from Slot

getSlot
from KnowledgeBase

getSuperslots
from Slot

getProtegeObject
from OW_KnowledgeBaseManager

directInstanceOf(String inst,
String cls)

getInstance
from KnowledgeBase

getCls
 from KnowledgeBase

hasDirectType
from Instance

- getProtegeObject
from OW_KnowledgeBaseManager

getDirectInstances
from OWI_Class

getName
from OW_Class

CS of TUCN, MLP Group
Portable Ontology Query Language (POQL)

Research Report, July 25, 2002

 17

Protégé_POQL_API OntoWorks_POQL_API Java POQL API
Protégé API calls Protégé API calls OntoWorksAPI calls

instanceOf(String inst,
String cls)

getInstance
from KnowledgeBase

getCls
 from KnowledgeBase

hasType
from Instance

- getProtegeObject
from OW_KnowledgeBaseManager

getInstances
from OWI_Class

getName
from OW_Class

getDirectTypeOf(String inst) getInstance
from KnowledgeBase

getDirectType
from Instance

getName
from Cls

getInstance
from KnowledgeBase

getDirectType
from Instance

getName
from Cls

getProtegeObject
from OW_KnowledgeBaseManager

getName
from OW_Class

getTypeOf(String inst) getInstance
from KnowledgeBase

getDirectType
from Instance

getSuperclasses
 from Cls

getInstance
from KnowledgeBase

getDirectType
from Instance

getProtegeObject
from OW_KnowledgeBaseManager

getSuperclasses
from OW_Class

getSuperslots(String slot) getSlot
 from KnowledgeBase

getSuperslots
from Slot

getSlot
 from KnowledgeBase

getSuperslots
from Slot

getProtegeObject
from OW_KnowledgeBaseManager

getDirectSuperslots(String
slot)

getSlot
 from KnowledgeBase

getDirectSuperslots
from Slot

getSlot
 from KnowledgeBase

getDirectSuperslots
from Slot

getProtegeObject
from OW_KnowledgeBaseManager

getDirectSubslots(String
slot)

getSlot
 from KnowledgeBase

getDirectSubslots
from Slot

getSlot
 from KnowledgeBase

getDirectSubslots
from Slot

getProtegeObject
from OW_KnowledgeBaseManager

CS of TUCN, MLP Group
Portable Ontology Query Language (POQL)

Research Report, July 25, 2002

 18

Protégé_POQL_API OntoWorks_POQL_API Java POQL API
Protégé API calls Protégé API calls OntoWorksAPI calls

getSubslots(String slot) getSlot
 from KnowledgeBase

getSubslots
from Slot

getSlot
 from KnowledgeBase

getSubslots
from Slot

getProtegeObject
from OW_KnowledgeBaseManager

getSuperclasses(String cls) getCls
 from KnowledgeBase

getSuperclasses
from Cls

- getClass
from OW_KnowledgeBaseManager

getSuperclasses
from OW_Class

getDirectSuperclasses(String
cls)

getCls
 from KnowledgeBase

getDirectSuperclasses
from Cls

- getClass
from OW_KnowledgeBaseManager

getDirectSuperclasses
from OW_Class

getSubclasses(String cls) getCls
 from KnowledgeBase

getSubclasses
from Cls

- getClass
from OW_KnowledgeBaseManager

getSubclasses
from OW_Class

getDirectSubclasses(String
cls)

getCls
 from KnowledgeBase

getDirectSubclasses
from Cls

- getClass
from OW_KnowledgeBaseManager

getDirectSubclasses
from OW_Class

CS of TUCN, MLP Group
Portable Ontology Query Language (POQL)

Research Report, July 25, 2002

 19

Protégé_POQL_API OntoWorks_POQL_API Java POQL API
Protégé API calls Protégé API calls OntoWorksAPI calls

getSlotAtInstanceValue(String
instS, String slotS)

getInstance
 from KnowledgeBase

getSlot
 from KnowledgeBase

getValueType
from Slot

getOwnSlots
from Instance

getOwnSlotValues
from Instance

getInstance
 from KnowledgeBase

getSlot
 from KnowledgeBase

getValueType
from Slot

getOwnSlots
from Instance

getOwnSlotValues
from Instance

getProtegeObject
from OW_KnowledgeBaseManager

getSlotsAtInstance(String
instS)

getInstance
 from KnowledgeBase

getOwnSlots
from Instance

getInstance
 from KnowledgeBase

getOwnSlots
from Instance

getProtegeObject
from OW_KnowledgeBaseManager

CS of TUCN, MLP Group
Portable Ontology Query Language (POQL)

Research Report, July 25, 2002

 20

4 Installation and Utilization Tips

4.1 Installation Guidelines

In order to have a working version of POQL, one must take the following steps:

• Make sure that OntoWorks or Protégé 2000 is installed to a path which contains
no blank spaces (XSB Prolog is designed for Linux, it won’t accept any path
that doesn’t conform to a standard Unix path).

• Unpack the self-extracting file to the OntoWorks installation directory.

Make sure that all necessary files are present:
• User files – in the plugins directory:

o poql_qsem.P, poql_operators.P, poql_map.P,
poql_api_calls.P;

• POQLTab.jar - in the plugins directory:
• Query history ontology related files – in the plugins directory:

o *.demo;
• XSB files: all XSB release files - in the OntoWorks installation

directory.
• Documentation files – in the OntoWorks directory:

Portable_Ontology_Query_Language.pdf,
Portable_Ontology_Query_Language__Research_Report.bat

• Copy the XSB release file structure to the installation directory of Protégé 2000

or Ontoworks (…\OntoWorks\XSB). Make sure that, no matter what version of
XSB is used, it is installed in a directory named XSB (not XSB_2_5 or others).
Set the PATH environment variable to point to the XSB executable binary file
(e.g. …\OntoWorks\xsb\config\x86-pc-windows\bin).

• Start OntoWorks or Protégé 2000 and in the File->Configure menu check the
box corresponding to the POQLTab.

All necessary Java files (classes and sources) are packed into the POQLTab.jar file .
Its structure is the following one:

o User interface: com.utcn.poql.ui.
 Choose_POQL_API_Dialog.java
 InstanceClsesPanel.java
 InstanceRenderer.java
 InstancesPanel.java
 POQLTab.java
 ResponseTable.java
 RootDirectory.java
 SlotRenderer.java
 SlotsPanel.java

o Ontology Access: com.utcn.poql.ontologyAccess.

CS of TUCN, MLP Group
Portable Ontology Query Language (POQL)

Research Report, July 25, 2002

 21

 POQL_API.java

 Result.java
com.utcn.poql.ontologyAccess.protégé.
 Protégé_POQL_API.java

com.utcn.poql.ontologyAccess.ontoWorks.
 OntoWorks_POQL_API.java

o Syntactic Parser: com.utcn.poql.syntacticParser.
 QP.jj
 ParseException.java
 QP.java
 QPConstants.java
 QPTokenManager.java
 SimpleCharStream.java
 Token.java
 TokenMgrError.java

4.2 Utilization Guidelines

Before the initialization of the tab takes place, the user is asked which of the
Protégé_API or the OntoWorks_API is to be used. By checking the Use Demo
CheckBox, a file containing queries is appended to the queries’ history (a list of queries
which have already been run; it may be used for easy selection of a previous query).
This is how the POQL Tab should look like, if you have followed the above mentioned
installation steps.

CS of TUCN, MLP Group
Portable Ontology Query Language (POQL)

Research Report, July 25, 2002

 22

After the selections corresponding to the initial dialog box have been made, the tab is
initialized:

The upper three panels correspond, respectively, to the class hierarchy, direct class’
instances and own slots of the selected class or instance (depending on the order of
selection of items in the previous two panels). By double clicking in one of the latter
two panels, the user may append the instance name (as opposed to the instance browser
name – see section 3.1) or the slot name to the cursor position in the query text field.

Queries are entered in a text entry field. They should obey the syntax (as is presented in
section 3.1). In order to ensure correctness of the execution, it is necessary that frame
names do not comprise characters other than alphanumeric and blanks.
A query may contain several types of Prolog constants. They should be entered
according to the following rules:

• Strings are contained between pairs of the character \”.
• The empty set is represented as “[]”.
• The allowed numerical constants are integers and floats.
• Possible boolean constants are true and false.

Also, all frame names should be input in-between pairs of the character \’.

CS of TUCN, MLP Group
Portable Ontology Query Language (POQL)

Research Report, July 25, 2002

 23

Results of the input query – all possible bindings of the defined variables are displayed
in the panel below the query input field. If there are unbound variables with no bindings
and still the query constraints are satisfied, such results are displayed using the *
character. When the value to which a variable is bound is undefined, it is displayed as
the empty set [].

Queries’ history is saved in a list which allows access to previous queries by simply
right-clicking in the query text entry area. Also, a file which has the same name with the
opened ontology and the extension .demo is loaded at the initialization of the tab. It
contains a list of queries, which are thus loaded in the queries’ history and accessible for
easy future access. This feature is enabled upon the selection of the API to be used.

NOTE: Due to Interprolog, one may experience difficulties when loading an ontology
once another has already been loaded. In this situation the application should be
restarted.

CS of TUCN, MLP Group
Portable Ontology Query Language (POQL)

Research Report, July 25, 2002

 24

5 Experimental Results

We chose to test POQL with ontologies built in Protégé 2000 [5], [9] and OntoWorks
[13] knowledge base creational environments. Our decision was based on the fact that,
among other, they present the advantage of integrating the OKBC model. We specially
created an ontology structure inspired from the one presented in Query Language for
KRML [12]. The results are shown for the above-mentioned ontologies and queries with
various complexities, obtained on an Athlon XP 1800+, using the OntoWorks platform
(although POQL may just as well be integrated in Protégé 2000).

5.1 Comprehensive Query Language for KRML

In order to show the results we have obtained in regards to the specifications in Query
Language for KRML [12], we created an ontology structure with 82 frames,
R_Ontology, inspired from the one presented in the above mentioned paper.

In order to have an easy way to query this ontology, we have generated the
R_Ontology.demo file, which comprises queries which comprehensively include the
use cases presented in Query Language for KRML. All these queries were executed both

CS of TUCN, MLP Group
Portable Ontology Query Language (POQL)

Research Report, July 25, 2002

 25

using the OntoWorks API and the Protégé API, presenting the response time in both
situations. The results are shown in the following table.

No.
crt.

POQL Query for R_Ontology [12] (no. of
frames = 82)

Protégé
API

(seconds)

OntoWo
rks API
(seconds)

1. ?Instance isa 'man'
?Instance
ruediger
walter
otto

0.040 0.030

2. 'R_Ontology_00025' : ?Class
?Class
man
person
:THING

0.040 0.030

3. ?Class sub 'person'
?Class
man
woman

0.041 0.040

4. 'woman' :: ?Class
?Class
person
:THING

0.040 0.040

5. 'sex' sub ?Slot
?Slot
biological-attribute

0.030 0.050

6. ?Slot :: 'biological-attribute'
?Slot
sex

0.030 0.030

7. ?Instance = 'R_Ontology_00026'.'lives-in'
?Instance
muenchen

0.030 0.020

8. ?InstanceClass isa ':living-thing'
?InstanceClass
man
person
woman

0.040 0.030

9. ?Class :: 'person'
?Class
man
woman

0.040 0.040

10. ?Instance : 'person', ?Instance isa
?Class, ?Instance.'lives-in' ==
'R_Ontology_00021'
?Instance ?Class
ruediger man
nina woman

0.110 0.120

11. ?Instance : 'person', ?Instance isa
?Class, ?Instance.'lives-in' \==
'R_Ontology_00021'
?Instance ?Class
walter man
otto man
elli woman
luise woman

0.130 0.121

CS of TUCN, MLP Group
Portable Ontology Query Language (POQL)

Research Report, July 25, 2002

 26

No.
crt.

POQL Query for R_Ontology [12] (no. of
frames = 82)

Protégé
API

(seconds)

OntoWo
rks API
(seconds)

12. ?Instance : 'person', ?Instance isa
?Class, not(?Instance.'lives-
in'=='R_Ontology_00021')
?Instance ?Class
walter man
otto man
elli woman
luise woman

0.131 0.110

13. not(?Instance.'lives-in'==
'R_Ontology_00021'), ?Instance isa
?Class, ?Instance : 'person'
?Instance ?Class
walter man
otto man
elli woman
luise woman

0.161 0.140

14. ?Instance : 'person',
?Instance.'parent'.'lives-in' ==
'R_Ontology_00021'
?Instance
ruediger
walter
elli

0.120 0.100

15. ?Instance : 'person',?Instance.'parent' =
?Instance1, ?Instance1.'lives-in' ==
'R_Ontology_00021'
?Instance ?Instance1
ruediger nina
walter ruediger
elli ruediger

0.120 0.140

16. ?R = 'R_Ontology_00025'.'parent' , ?S =
'R_Ontology_00024'.'parent', ?T =
'R_Ontology_00029'.'parent',(?R.'lives-
in' = ?S.'lives-in'; ?R.'lives-in' =
?T.'lives-in')
?R ?S ?T
ruediger nina []

0.050 0.060

17. ?A : 'person',?A isa 'woman'
?A
elli
luise
nina

0.100 0.100

18. ?A : 'person',not(not(?A isa 'woman'))
?A
elli
luise
nina

0.130 0.130

19. ?A : 'person', not((?A.'lives-in' ==
'R_Ontology_00021' ; ?A.'lives-in'
=='R_Ontology_00023'))
?A
walter
elli
luise

0.090 0.100

CS of TUCN, MLP Group
Portable Ontology Query Language (POQL)

Research Report, July 25, 2002

 27

No.
crt.

POQL Query for R_Ontology [12] (no. of
frames = 82)

Protégé
API

(seconds)

OntoWo
rks API
(seconds)

20. ?A : 'person', (not(?A.'lives-in' ==
'R_Ontology_00021') , not (?A.'lives-in'
=='R_Ontology_00023'))
?A
walter
elli
luise

0.090 0.090

5.2 Extending the OKBC Assertion Language

Due to the inner incompleteness of the Prolog with freeze computational model, one
might phrase queries which are indefinitely postponed (undefined) (e.g. ?A sub ?B).
For such queries, an error message is issued: “Unbound Variables Exception”.

We shall refer as acceptable (defined) queries to all other queries (i.e. – queries which
are not indefinitely postponed). For these queries, we have demonstrated their
soundness in section 2.3. Many of the indefinitely postponed queries may be
transformed to be acceptable by enriching the specification of the query (e.g. for the
above example, a transformed acceptable form is ?A :: ‘:THING’, ?A sub ?B).

All extensions of POQL as compared to the OKBC Assertion Language [6] (the use of
disjunction, negation and so on) refer implicitly to acceptable queries and ensure the
return of the correct answer (see section 2.3).

All queries in the above table are acceptable queries. The use of logical operators
allows the construction of syntactically different queries although semantically
equivalent. For instance, the queries 11, 12, and 13 in the above table, though phrased in
a different form, have the same semantic and therefore return the same answer. Their
semantic negation is given as query 10, and the answer is negated as well.

As an emphasis, for acceptable queries, double negation and the applying of
DeMorgan’s Laws both work, due to the safety of negation as failure ensured by the
Prolog with freeze, as illustrated in the queries 17, 18 for double negation
(not(not(A)) ↔ A), respectively 19, 20 for DeMorgan’s Laws (not(A;B) ↔

not(A), not(B)).

5.3 Beyond the “peculiarities” of SQL

In [2] on page 129, H. Garcia-Molina, reports “the peculiar way in which SQL handles
OR operations in where-clauses. Supposing we have three unary relations R, S and T,
and we wish to compute R ∩ (S ∪ T). Supposing each of these relations has a single
attribute A, we might expect the following SQL query to do the trick.

CS of TUCN, MLP Group
Portable Ontology Query Language (POQL)

Research Report, July 25, 2002

 28

select R.A
from R, S, T
where R.A = S.A or R.A = T.A;

Unfortunately, if T is empty, the SQL result is empty, even if there are elements in
R∩S”.

Fortunately, POQL completely eliminates these shortcomings, in a similar fashion to
the LOREL language, also presented by Molina in [2].

As an illustration of this, the very same example is shown in POQL form in query 16 in
the above table, where we obtain the expected correct answer, although T is empty.

5.4 Checking Ontology Consistency

POQL was tested on a number of four ontologies, with complex queries representing
various consistency checking. All queries were run both using the Protégé and the
OntoWorks API. The following tables show the number of results along with the
execution time. All queries may be found in the associated files:
Level8-withConstr-Restriction.demo, Newspaper-queries.demo,

Organizational_Model.demo and are available for consulting if the demo check
box is checked. The consistency tests refer to the multiple inheritance property(query1),
the list of classes which have at least two distinct subclasses(query 2), common
boundaries of trees rooted in different classes(query 3) and so on. The tests show both
the possibility of querying different ontologies and the complexity of the queries
themselves. The large values for the response time correspond to complex queries
which search thoroughly the ontology space.

Level8-withConstr-Restriction – 331 frames

 Query Protégé

API
(seconds)

OntoWorks
API

(seconds)

No. of
results

1 ?ClassA :: ':THING' , ?ClassA sub ?SuperA1,
?ClassA sub ?SuperA2, ?SuperA1 \==?SuperA2

13.850 7.551 6

2 ?ClassA :: ':THING' , ?SubA1 :: ?ClassA,
?SubA2 :: ?ClassA, ?SubA1 \== ?SubA2

111.080 114.134 8900

3 ?ClassA sub ':THING', ? ClassB sub
':THING', ? ClassB \== ?ClassA, ?IstCls ::
? ClassA, ?IstCls : ? ClassB

11.066 21.040 37

4 ? ClassA sub 'EveryThing',

'smallDieselMotor-1' : ? ClassA

0.050 0.030 1

5 ? ClassA :: ':DCX_CF_SYSTEM_CLASS', ?

ClassB :: ':DCX_CF_SYSTEM_CLASS', ? ClassA

\==?ClassB, ?SubA sub ? ClassA, ?SubB sub ?

ClassB, ? ClassA sub ?SuperAB, ? ClassB sub

?SuperAB

6.299 6.198 2

CS of TUCN, MLP Group
Portable Ontology Query Language (POQL)

Research Report, July 25, 2002

 29

Newspaper-queries – 189 Frames;
(http://protege.stanford.edu/ontologies.html)

 Query Protégé

API
(seconds)

OntoWorks
API

(seconds)

No. of
results

1 ?ClassA :: ':THING' , ?ClassA sub ?SuperA1,
?ClassA sub ?SuperA2, ?SuperA1 \==?SuperA2

4.300 4.100 6

2 ?ClassA :: ':THING' , ?SubA1 :: ?ClassA, ?SubA2
:: ?ClassA, ?SubA1 \== ?SubA2

5.047 5.377 192

3 ?ClassA sub ':THING', ?ClassB sub ':THING',
?ClassB \== ?ClassA, ?IstCls :: ?ClassA, ?IstCls
: ?ClassB

9.614 13.990 20

4 ?InstanceAB isa ?_ClassA , ?InstanceAB isa
?_ClassB, ?_ClassA :: 'Author' , ?_ClassB ::
'Person'

0.350 0.320 7

5 (?InstanceA isa 'Personals_Ad'; (?InstanceB isa
'Article',
?InstanceB.'containing_section'=?InstanceValueB,
?InstanceValueB.'section_name'\=="Lifestyle")),
?InstanceB.'published_in'=?InstanceA,
?InstanceA.'number_of_pages' =?InstanceValueA,
not(?InstanceValueA<35)

0.300 0.281 4

Organizational_Model – 163 Frames;
(http://protege.stanford.edu/ontologies.html)

Query Protégé
API

(second
s)

OntoWorks
API

(seconds)

No. of
results

?ClassA :: ':THING' , ?ClassA sub ?SuperA1,
?ClassA sub ?SuperA2, ?SuperA1 \==?SuperA2

3.975 12.388 4

?ClassA ?SuperA1 ?SuperA2

Organizational_Model_Diagram Network Organizational_Model_Entity
Organizational_Model_Diagram Organizational_Model_Entity Network
Organizational_Model_connector Connector Organizational_Model_Entity
Organizational_Model_connector Organizational_Model_Entity Connector
?ClassA :: ':THING' , ?SubA1 :: ?ClassA, ?SubA2
:: ?ClassA, ?SubA1 \== ?SubA2

7.451 11.418 780

?ClassA sub ':THING', ?ClassB sub ':THING',
?ClassB \== ?ClassA, ?IstCls :: ?ClassA, ?IstCls
: ?ClassB

1.142 1.231 33

?ClassA :: 'Diagram_Entity', ?ClassB
::'Organizational_Model_Entity', ?SubAB sub
?ClassA, ?SubAB sub ?ClassB

21.591 31.385 7

?InstanceA isa 'Point', ?InstanceA.'x'=130,
?InstanceA.'y'=?InstanceValueA, ?InstanceB isa
'ObjectLocation',
?InstanceB.'location'=?InstanceValueB,
(?InstanceValueB.'lower_right_corner'=?InstanceA
; ?InstanceValueB.'upper_left_corner'
=?InstanceA)

0.350 0.280 1

?InstanceA : ?Class, ?InstanceB : ?Class,
?InstanceB.'x' \== ?InstanceA. 'x', ?InstanceA =
'INSTANCE_00016'

10.828 4.846 48

CS of TUCN, MLP Group
Portable Ontology Query Language (POQL)

Research Report, July 25, 2002

 30

6 Conclusions and Possible Further Developments

We have described in this paper our approach regarding the development,
implementation and usage of POQL, a new language for solving investigations in a
portable knowledge base. It presents several advantages over other querying tools:

• it allows a query syntax that follows the Prolog logical form, therefore enabling
the further development of interfaces that would communicate with our tool
(i.e. Natural Language Interfaces, which make possible for users that are not
familiar with the given ontologies to ask them queries.);

• the use of a Prolog with freeze meta-interpreter brings the possibility of
generating complex queries; the solutions are computed taking advantage of the
backtracking mechanism and the postponing technique. As a possible future
development, one might extend the Prolog constraints with general expressions,
also making use of a postponing technique;

• queries are introduced in the interface in a Prolog like manner, without being
restricted to certain patterns, which leads to increased flexibility in searching the
solution space;

• queries are parsed before sending them to the Prolog resolution mechanism, thus
eliminating syntactic errors and ensuring the use of frame names belonging to
the knowledge base space, before calling the Prolog solver;

• it contains a user friendly interface, integrated in both the Protégé 2000 and
OntoWorks environments, which take full advantage of the possibilities of the
described query language.

POQL conforms to the Prolog logical form, thus being independent towards any
specific knowledge base creational environment. Its independence renders it fit for
usage in other such environments and for future developments of interfaces that would
communicate with POQL. Our implementation allows further developments for
ontologies merging theory support (by using axiom-predicate as defined in section 2.2).

As stated in section 2.1., POQL overcomes the limitations of the OKBC Assertion
Language [6] by introduction of disjunction, negation, relational operators, and also the
limitations of OQL and SQL mentioned in [2]. The above statements are sustained by
the examples presented in sections 5.2 and 5.3. Also, as stated in the same section, the
distinction between classes and instances is not an absolute one due to the existence of
metaclasses. Still, the current implementation of the POQL Kernel provides methods
concerning metaclasses, which are not used in the present version. They might represent
future development starting points for KRSs used for ontologies in which the
distinction between classes and metaclasses is functionally relevant.

7 Acknowledgements

The authors wish to thank Kalman Pusztai form TUCN and Mugur Tatar from DC AG
for the initiation of this contract, and also to Ruediger Klein for the professional
collaboration during the development of this research project.

CS of TUCN, MLP Group
Portable Ontology Query Language (POQL)

Research Report, July 25, 2002

 31

8 References

[1] Eriksson, H., Fergerson, R.W., Shahar, Y. & Musen M. A. (1999). Automatic Generation of Ontology

Editors. Twelfth Banff Knowledge Acquisition for Knowledge-based systems Workshop, Banff,
Alberta, Canada.

[2] Molina, H. G., Papakonstantinou, Y., Quass, D., Rajaraman, A., Sagiv, Y., Ullman, J., Vassalos, V. &
Widom, J. (1997). The TSIMMIS approach to mediation: Data models and Languages. Journal of
Intelligent Information Systems, 8(2), pag. 117-132.

[3] Muresan, T., Potolea, R., Muresan, S. (1998). Amalgamating CCP with Prolog, Scientific Journal of
Technical University Timisoara, Vol.43,57, no.4, 1998, Special Issue Dedicated to Third
International Conference on Technical Informatics, CONTI’98, Romania, pag.47 - 58 .

[4] Musen, M.A., Fergerson, R.W., Grosso, W.E., Noy, N.F., Crubezy, M. & Gennari, J.H. (2000).
Component-Based Support for Building Knowledge-Acquisition Systems. Conference on Intelligent
Information Processing (IIP 2000) of the International Federation for Information Processing World
Computer Congress (WCC 2000), Beijing.

[5] Noy, N.F., Fergerson, R.W. & Musen M.A. (2000). The knowledge model of Protege-2000:
Combining interoperability and flexibility. 2th International Conference on Knowledge Engineering
and Knowledge Management (EKAW'2000), Juan-les-Pins, France.

[6] Chaudhri, V.K., Farquhar, A., Fikes, R., Karp, P.D. and Rice, J.P. (1998). OKBC: A Programmatic
Foundation for Knowledge Base Interoperability. Proceedings of the Fifteenth National Conference
on Artificial Intelligence (AAAI – 98), Madison, Wisconsin, AAAI Press.

[7] Noy, N.F., Musen, M.A. (1999). An Algorithm for Merging and Aligning Ontologies: Automation
and Tool Support. Sixteenth National Conference on Artificial Intelligence (AAAI-99), Workshop on
Ontology Management, Orlando, FL.

[8] Gruber, T.R. (1991). A translation approach to portable ontology specifications. Knowledge
Acquisition, 5, pag. 199-220.

[9] Grosso, W., Eriksson, H., Fergerson, R., Gennari, J., Tu S., and Musen, M. (2000). Knowledge
Modeling at the Millenium (The Design and Evolution of Protégé-2000), Stanford University.

[10] Noy, N.F., Musen, M.A. (2001). Anchor-PROMPT: Using Non-Local Context for Semantic
Matching. Proceedings of the Workshop on Ontologies and Information Sharing at the Seventeenth
International Joint Conference on Artificial Intelligence (IJCAI-2001), Seattle, WA.

[11] Janssen T. (1997). Compositionality. J. van Benthem and A. ter Meulen, editors, Handbook of Logic
and Language,and Linguistics, pages 417-473. Elsevier Science.

[12] Rudiger K. A query constraint language for KRML, Daimler Chrysler AG.
[13] Hildebrandt, H., Lukibanov, O.Y., Keutgen, I., OntoWorks Tutorial, Daimler Chrysler AG.
[14] Noy, N.F., Musen, M.A. (2000). PROMPT: Algorithm and Tool for Automated Ontology Merging

and Alignment, Proceedings of the Seventeenth Conference on Artificial Intelligence (AAAI 2000),
Austin, Texas.

[15] Saraswat, V.A. Concurrent Constraint Programming 1993, MIT Press, ACM Doctoral Dissertatio
Award and Logic Programming Series.

[16] Cimpian, E., Mocan, A., Popovici, R., Tarcea H. (2002). KBQL: A Query Language for Protégé
Based Ontologie, International Conference on Automation, Quality and Testing, Robotics, Cluj-Napoca,
Romania .

[17] Sintek M. The Flora Query Tab, Querying Protégé 2000 with F-Logic. 2002. http://dfki.uni-
kl.de/~sintek/FloraTab.

[18] XSB Prolog Reference. http://xsb.sourceforge.net
[19] JavaCC, http://www.webgain.com/products/java_cc/
[20] Java, http://java.sun.com/j2se/

CS of TUCN, MLP Group
Portable Ontology Query Language (POQL)

Research Report, July 25, 2002

 32

9 APPENDIX A - Prolog Metainterpreter

%***
%
% QUERIES SEMANTIC / Meta-interpreter of Prolog with freeze
%
%***

semantic(X, S):-!,sem_freeze(X, T/T, S).

sem_freeze(X) --> {!}, semantic(X) ,sem_queue.

sem_freeze(X,Val) --> {!},semantic(X,Val), sem_queue.

semantic((G1,G2)) --> {!},sem_freeze(G1),sem_freeze(G2).

semantic((G1;G2)) --> {!},(sem_freeze(G1);sem_freeze(G2)).

semantic(not(Goal)) --> {!}, postpone_n(Goal).

semantic((nott(Goal))) --> sem_freeze(Goal), {!, fail}.

semantic((nott(GOal))) --> {!}.

semantic(Goal) --> {functor(Goal,F,_), poql_op(F), !}, postpone(Goal).

semantic(Goal) --> {Goal=..[F,X,Y], eq_op(F), !}, sem_freeze(X,VX),

sem_freeze(Y,VY), {Goal1 =..[F,VX,VY]}, system(Goal1).

semantic(Goal) --> {Goal=..[F,X,Y], math_op(F), !},sem_freeze(X,VX),

sem_freeze(Y,VY), {number(VX), number(VY), Goal1 =..[F,VX,VY]},
system(Goal1).

semantic(X,X) --> {(var(X);atomic(X)),!}.

semantic(A@B) --> {var(B), !}, postpone_p(dot3(A,B)).
semantic(A@B@C) --> {!}, sem_freeze(dot3(A,B), V), sem_freeze(V@C).
semantic(A@B) --> {!}, postpone_p(dot3(A,B)).

postpone_p(dot3(A,B)) --> {!}, freeze((A+A), sdot(A,B)).

semantic(A@B,V) --> {var(B),!}, postpone_p(dot3(A,B),V).
semantic(A@B@C,Val) --> {!}, sem_freeze(dot3(A,B),V), sem_freeze(V@C, Val).
semantic(A@B,V) --> {!}, postpone_p(dot3(A,B),V).
semantic(dot3(A,B),V) --> {!}, postpone_p(dot3(A,B),V).

postpone_p(dot3(A,B),V) --> {!}, freeze((A+A), dott3(A,B,V)).

semantic(Goal) --> {axiom_predicate(Goal), !}, user(Goal).

semantic(Goal) --> {!}, system(Goal).

user(Goal) --> {clause(Goal,Body)}, sem_freeze(Body).

system(true) --> {!}.
system(Goal) --> {!,Goal}.

postpone_n(Goal) --> {var_set(Goal, SetVar)}, freeze_n(SetVar, Goal).

CS of TUCN, MLP Group
Portable Ontology Query Language (POQL)

Research Report, July 25, 2002

 33

postpone(Goal) --> {Goal=..[Op,X,Y], rename(Op,Op1), Goal1 =..[Op1,X,Y]},

freeze((X+Y),Goal1).

freeze_n(SetVar, Goal) --> {ground_set(SetVar), !}, sem_freeze(nott(Goal)).
freeze_n(C,Goal,Ti/ (freeze_n(C,Goal),To),Ti/To):-!.

freeze((X+Y),Goal) --> {(nonvar(X);nonvar(Y)), !}, sem_freeze(Goal).
freeze(C,Goal,Ti/ (freeze(C,Goal),To),Ti/To):-!.

resuspend(X,Ti/To,(X,Ti)/To).

sem_queue(S/S,S/S) :- var(S),!.
sem_queue((freeze((X+Y),Goal),Ti)/To,So):-var(X),var(Y),!,

sem_queue(Ti/To,S),!,resuspend(freeze((X+Y),Goal),S,So).
sem_queue((freeze(_,(Goal)),Ti)/To,So):-!,sem_freeze(Goal,Ti/To,So).

sem_queue((freeze_n(SetVar,Goal),Ti)/To,So):-not(ground_set(SetVar)),!,

sem_queue(Ti/To,S),!,resuspend(freeze_n(SetVar,Goal),S,So).
sem_queue((freeze_n(_,(Goal)),Ti)/To,So):-!, sem_freeze(nott(Goal),Ti/To,So).

axiom_predicate(G):- functor(G,F,_), axiom_pred_list(L),member(F,L).

axiom_pred_list(L) :- L = [].

poql_op(Op):- member(Op,[:, ::, isa, sub]).

eq_op(Op) :- member(Op,[=, ==, \==]).

math_op(Op) :- member(Op, [<, >, >=, =<]).

rename(isa, isaa).
rename(:, :^).
rename(::, ::^).
rename(sub, subb).

%***
%
% ATOMIC QUERIES SEMANTIC
%
%***
%
% The following equivalences hold true:
%
% poql-op(a,B) <=> forall(X, poql-op(a,X), Lx), member(B, Lx)
%
% forall(X, poql-op(a,X), Lx) <=> api(a, _, poql-op), result(yes, Lx)
%
% where api(a, _, poql-op), result(yes, Lx) represents a Java API call
%
%**

%*************** :: - subclass (direct or indirect) ******************
:- op(300, xfx, [::,::^]).
::^(A, B) :- var(A),!,api(_, B, ::), result(yes,Lx), member(A, Lx).
::^(A, B) :- var(B),!,api(A, _, ::), result(yes,Lx), member(B, Lx).
::^(A, B) :- api(A, B, ::), result(yes, _).

%**************** sub - direct subclass *************************************
:- op(300, xfx, [sub, subb]).
subb(A, B) :- var(A),!,api(_, B, sub), result(yes, Lx), member(A, Lx).
subb(A, B) :- var(B),!,api(A, _, sub), result(yes, Lx), member(B, Lx).
subb(A, B) :- api(A, B, sub), result(yes, _).

CS of TUCN, MLP Group
Portable Ontology Query Language (POQL)

Research Report, July 25, 2002

 34

%**************** : - instances(direct or indirect)********************
:- op(300, xfx, [:, :^]).
:^(A, B) :- var(A),!,api(_, B, :), result(yes, Lx), member(A, Lx).
:^(A, B) :- var(B),!,api(A, _, :), result(yes, Lx), member(B, Lx).
:^(A, B) :- api(A, B, :), result(yes, _).

%**************** isa - direct instances ********************************
:- op(300, xfx, [isa, isaa]).
isaa(A, B) :- var(A),!,api(_, B, isa), result(yes, Lx), member(A, Lx).
isaa(A, B) :- var(B),!,api(A, _, isa), result(yes, Lx), member(B, Lx).
isaa(A, B) :- api(A, B, isa), result(yes, _).

%*************** . <=> @ - attributes' values (dott3, sdot)*************
:- op(150, xfy, @).

dott3(A,B,V) :- nonvar(A), nonvar(B), !, api(A, B, @), result(yes,LV),

(LV == [] -> V = []; member(V, LV)).
dott3(A,B,V) :- var(B), !, api(A, _, @), result(yes, LB),

(LB == [] -> B = []; member(B, LB)), dott3(A,B,V).

sdot(A, B) :- nonvar(A), nonvar(B), !, api(A, B, @), result(yes, _).
sdot(A, B) :- var(B), !, api(A, _, @), result(yes, LB),

(LB == [] -> B = []; member(B, LB)).

CS of TUCN, MLP Group
Portable Ontology Query Language (POQL)

Research Report, July 25, 2002

 35

10 APPENDIX B - Knowledge Base Accesss Methods

We give here a list of POQL_API methods one may use to access a knowledge base.

/**
 * sets new Protege Knowledge Base
 * @param kb edu.stanford.smi.protege.model.KnowledgeBase
 */

public static void setKnowledgeBase(kb)

/**
 * sets new OntoWorks Knowledge Base
 * @param kb edu.stanford.smi.protege.model.KnowledgeBase
*/

 public static void setOWI_KnowledgeBaseManager(kb)

/**
 * sets new Prolog Engine
 * @param prologEngine com.declarativa.interprolog.PrologEngine
 */

 public static void setPrologEngine(prologEngine)

/**
 * checks if cls is the name of a class
 * @param cls java.lang.String
 * @return com.utcn.POQL.ontologyAccess.Result
 */

 public static Result isClass(cls)

/**
 * checks if slot is the name of a slot
 * @param slot java.lang.String
 * @return com.utcn.POQL.ontologyAccess.Result
 */

 public static Result isSlot(slot)

/**
 * checks if metaCls is the name of a metaclass
 * @param metaCls java.lang.String
 * @return com.utcn.POQL.ontologyAccess.Result
 */

 public static Result isMetaclass(metaCls)

/**
 * gets list of names for direct Instances of the class cls
 * @param cls java.lang.String
 * @return com.utcn.POQL.ontologyAccess.Result
 */

 public static Result getDirectInstances(cls)

/**
* gets list of names for all Instances (direct or indirect)of the

class cls
 * @param cls java.lang.String
 * @return com.utcn.POQL.ontologyAccess.Result
 */

 public static Result getInstances(cls)

/**
 * checks if son is a subclass of parent

CS of TUCN, MLP Group
Portable Ontology Query Language (POQL)

Research Report, July 25, 2002

 36

 * @param son java.lang.String
 * @param parent java.lang.String
 * @return com.utcn.POQL.ontologyAccess.Result
 */

 public static Result subclassOf(son, parent)

/**
 * checks if son is a direct subclass of parent
 * @param son java.lang.String
 * @param parent java.lang.String
 * @return com.utcn.POQL.ontologyAccess.Result
 */

 public static Result directSubclassOf(son, parent)

/**
 * checks if parent is a superclass of son
 * @param parent java.lang.String
 * @param son java.lang.String
 * @return com.utcn.POQL.ontologyAccess.Result
 */

 public static Result superclassOf(parent, son)

/**
 * checks if parent is a direct superclass of son
 * @param parent java.lang.String
 * @param son java.lang.String
 * @return com.utcn.POQL.ontologyAccess.Result
 */

 public static Result directSuperclassOf(parent, son)

/**
 * checks if parent is a direct superslot of son
 * @param parent java.lang.String
 * @param son java.lang.String
 * @return com.utcn.POQL.ontologyAccess.Result
 */

 public static Result directSuperslotOf(parent, son)

/**
 * checks if son is a direct subslot of parent
 * @param son java.lang.String
 * @param parent java.lang.String
 * @return com.utcn.POQL.ontologyAccess.Result
 */

 public static Result directSubslotOf(son, parent)

/**
 * checks if parent is a superslot of son
 * @param parent java.lang.String
 * @param son java.lang.String
 * @return com.utcn.POQL.ontologyAccess.Result
 */

 public static Result superslotOf(parent, son)

/**
 * checks if son is a subslot of parent
 * @param son java.lang.String
 * @param parent java.lang.String
 * @return com.utcn.POQL.ontologyAccess.Result
 */

 public static Result subslotOf(son, parent)

/**
 * checks if inst is a direct instance of cls
 * @param inst java.lang.String

CS of TUCN, MLP Group
Portable Ontology Query Language (POQL)

Research Report, July 25, 2002

 37

 * @param cls java.lang.String
 * @return com.utcn.POQL.ontologyAccess.Result
 */

 public static Result directInstanceOf(inst, cls)

/**
 * checks if inst is a instance of cls
 * @param inst java.lang.String
 * @param cls java.lang.String
 * @return com.utcn.POQL.ontologyAccess.Result
 */

 public static Result instanceOf(inst, cls)

/**
 * gets the direct type(class) of instance inst
 * @param inst java.lang.String
 * @return com.utcn.POQL.ontologyAccess.Result
 */

 public static Result getDirectTypeOf(inst)

/**
 * gets the type(class) of instance inst
 * @param inst java.lang.String
 * @return com.utcn.POQL.ontologyAccess.Result
 */

 public static Result getTypeOf(inst)

/**
 * gets list of names for all superslots of slot slot
 * @param slot java.lang.String
 * @return com.utcn.POQL.ontologyAccess.Result
 */

 public static Result getSuperslots(slot)

/**
 * gets list of names for all direct superslots of slot slot
 * @param slot java.lang.String
 * @return com.utcn.POQL.ontologyAccess.Result
 */

 public static Result getDirectSuperslots(slot)

/**
 * gets list of names for all direct subslots of slot slot
 * @param slot java.lang.String
 * @return com.utcn.POQL.ontologyAccess.Result
 */

 public static Result getDirectSubslots(slot)

/**
 * gets list of names for all subslots of slot slot
 * @param slot java.lang.String
 * @return com.utcn.POQL.ontologyAccess.Result
 */

 public static Result getSubslots(slot)

/**
 * gets list of names for all superclasses of class cls
 * @param cls java.lang.String
 * @return com.utcn.POQL.ontologyAccess.Result
 */

 public static Result getSuperclasses(cls)

/**
 * gets list of names for all direct superclasses of class cls
 * @param cls java.lang.String

CS of TUCN, MLP Group
Portable Ontology Query Language (POQL)

Research Report, July 25, 2002

 38

 * @return com.utcn.POQL.ontologyAccess.Result
 */

 public static Result getDirectSuperclasses(cls)

/**
 * gets list of names for all subclasses of class cls
 * @param cls java.lang.String
 * @return com.utcn.POQL.ontologyAccess.Result
 */

 public static Result getSubclasses(cls)

/**
 * gets list of names for all direct subclasses of class cls
 * @param cls java.lang.String
 * @return com.utcn.POQL.ontologyAccess.Result
 */

 public static Result getDirectSubclasses(cls)

/**
 * gets value of slot at an instance
 * @param instS java.lang.String
 * @param slotS java.lang.String
 * @return com.utcn.POQL.ontologyAccess.Result
 */

 public static Result getSlotAtInstanceValue(instS, slotS)

/**
 * gets own slots of instance
 * @param instS java.lang.String
 * @return com.utcn.POQL.ontologyAccess.Result
 */

 public static Result getSlotsAtInstance(instS)

CS of TUCN, MLP Group
Portable Ontology Query Language (POQL)

Research Report, July 25, 2002

 39

11 APPENDIX C - JavaDoc Files

student
JavaDoc

